
IEEE Draft Std P1275.6/D5
Standard for Boot (Initialization

Configuration) Firmware
64 Bit Extensions

March 20, 1995

DRAFT EDITION FOR SPONSOR BALLOTING
Sponsored by the IEEE Bus Architecture Standards Committee

Prepared by the Open Firmware Working Group

This is an unapproved draft of a proposed IEEE Standard, subject to change. Permission is
hereby granted for IEEE Standards Committee participants to reproduce this document for

purposes of IEEE standardization activities. If this document is to be submitted to ISO or IEC,
notification shall be given to the IEEE Copyright Administrator. Permission is also granted for

member bodies and technical committees of ISO and IEC to reproduce this document for
purposes of developing a national position. Other entities seeking permission to reproduce this
document for standardization or other activities, or to reproduce portions of this document for
these or other uses must contact the IEEE Standards Department for the appropriate license.

Use of information contained in this unapproved draft is at your own risk.

IEEE Standards Department
Copyright and Permissions

445 Hoes Lane, PO Box 1331
Piscataway, NJ 08855-1331 USA

Copyright  1992-95 by the Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017 USA

All rights reserved.

Copyright  1992-1995 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

ii

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

IEEE Draft Std P1275.6/D5 March 20, 1995

Introduction
(This introduction is not a part of IEEE Draft Std P1275.6/D3, Standard for Boot (Initialization Configuration) Firm-
ware, 64 Bit Extensions.)
Firmware is the ROM-based software that controls a computer between the time it is turned on and the time the pri-
mary operating system takes control of the machine. Firmware's responsibilities include testing and initializing the
hardware, determining the hardware configuration, loading (or booting) the operating system, and providing interac-
tive debugging facilities in case of faulty hardware or software.
Open Firmware is the firmware architecture defined by IEEE Std 1275-1994, Standard for Boot (Initialization
Configuration) Firmware, Core Requirements and Practices. That standard is bus-independent, instruction-set-
independent, and system-independent.
The core requirements and practices specified by IEEE Std 1275-1994 must be supplemented by system-specific
requirements to form a complete specification for the firmware for a particular system. This standard establishes
such additional requirements pertaining to 64 bit processors and systems.

Copyright  1992-1995 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

iii

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

IEEE Draft Std P1275.6/D5 March 20, 1995

Working Group Members
The following individuals were members of the Working Group at the time this document was produced:
William M. (Mitch) Bradley, Chairman, FirmWorks David M. Kahn, Vice Chairman, Sun Microsystems, Inc.
John Rible, Draft Editor, FORCE COMPUTERS Inc. Luan D. Nguyen, Secretary, IBM Corporation
Mike Tuciarone, FirmWorks David L. Paktor, FORCE COMPUTERS Inc.
Paul Thomas, Sun Microsystems, Inc. Thanos Metzelopoulos, Antel, Inc.
Ron Hochsprung, Apple Computer Inc. Yongjae Rim, IBM Corporation
Martin Walsh, Sun Microsystems, Inc. Mike Williams, SHL

Sponsor Balloting Body
The following individuals were members of the Sponsor Balloting Body:

Copyright  1992-1995 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

iv

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

IEEE Draft Std P1275.6/D5 March 20, 1995

This page is intentionally left blank.

Copyright  1992-1994 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

v

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

IEEE Draft Std P1275.6/D5 March 20, 1995

Table of Contents

Introduction .. ii

1. Overview .. 1

2. References .. 1

3. Terms .. 1

4. Generic Requirements .. 1

4.1. Cell Size and Client Interfaces.. 1

4.2. Virtual Address Allocation ... 1

5. Interface Changes and Extensions.. 2

5.1. 64-Bit Extensions.. 2

5.2. 64-Bit Changes.. 4

Copyright  1992-1994 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

vi

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

IEEE Draft Std P1275.6/D5 March 20, 1995

This page is intentionally left blank.

Copyright  1992-1995 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

IEEE Draft Std P1275.6/D5 March 20, 1995

1. Overview
This standard describes the application of IEEE Std 1275-1994, Standard for Boot (Initialization Configuration)
Firmware, Core Requirements and Practices, to 64 bit processors and systems. Additional supplements for 64 bit
processors and systems should include this supplement by reference.

2. References
[1] IEEE Std 1275-1994, Standard for Boot (Initialization Configuration) Firmware, Core Requirements and
Practices

3. Terms
This standard uses technical terms as they are defined in the documents cited in “References”, plus the following
terms:
core, core specification: refers to IEEE Std 1275-1994, Standard for Boot (Initialization Configuration) Firmware,
Core Requirements and Practices, i.e., the standard that specifies the system-independent and bus-independent
requirements for Open Firmware.
Open Firmware, firmware: The firmware architecture defined by the core specification and this specification or,
when used as an adjective, a software component compliant with the core specification and this specification.

4. Generic Requirements

4.1. Cell Size and Client Interfaces
The cell-size for implementations compliant with this standard shall be 64-bits. 64-bit implementations shall export a
64-bit client interface based on a set of bindings to the core specification for that 64-bit instruction set architecture.
64-bit implementations may choose to export both a 32-bit and a 64-bit client interface, depending on the type of
standalone program compatibility required by the implementation.
It is recommended that 64-bit implementations only export a single 64-bit client interface, and that 32-bit client pro-
grams use a software wrapper layer to convert 32-bit client interface calls to 64-bit calls and convert 64-bit results to
32-bit results.

4.2. Virtual Address Allocation
The firmware may use any portion of the virtual address space, including virtual addresses above the 32-bit address
range. The firmware should allocate all virtual addresses from the range 0x0 through 0xffff.ffff, except those virtual
addresses that the firmware does not expose through the client or device interfaces. This recommendation allows 32-
bit client programs to access firmware-allocated virtual addresses. Client programs that use a 32-bit client interface
and manage the upper portion of the virtual address space must do so on their own, and must respect any allocations
made by firmware in the upper portion of the address space.

Copyright  1992-1995 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

IEEE Draft Std P1275.6/D5 March 20, 1995

5. Interface Changes and Extensions

5.1. 64-Bit Extensions
This document augments and modifies the core specification in the following ways:
This specification overrides the following definitions in the core specification, Annex A, Section A.1.2.2:

x x1 x2 etc. Arbitrary 64 bit stack items.
n n1 n2 n3 Normal, signed values (64-bit)
xyz Arbitrary descriptive text (signed 64-bit value)

This specification adds the following definitions:
o o1 o2 oct1 oct2 etc. 64 bit signed values
oaddr Octlet-aligned (64 bit aligned) address
octlet An 8 byte quantity

This specification adds the following FCode functions. A system that implements the FCode Debugging Command
Group shall implement commands corresponding to all of the FCode functions listed in this section with the same
names and semantics as those FCode functions.

bxjoin (b.lo b.2 b.3 b.4 b.5 b.6 b.7 b.hi -- o) F 0x241
Join 8 bytes to form an octlet.

Combine the eight least significant bits of each operand to form an octlet. Other operand bits are ignored.

<l@ (qaddr -- n) F 0x242
Fetch quadlet from qaddr, sign-extended.

lxjoin (quad.lo quad.hi -- o) F 0x243
Join 2 quadlets to form an octlet.

Combine the thirty-two least significant bits of each operand to form an octlet. Other operand bits are ignored.

rx@ (FCode Function) (oaddr -- o) F 0x22E
Fetch an octlet from device register at oaddr.

Data is read with a single access operation.
Result has identical bit ordering as the original register data.

rx@ (User Interface) (oaddr -- o)
Fetch an octlet from device register at oaddr.

Compilation:
Perform the equivalent of the phrase:

h# 22e get-token if compile, else execute then

Interpretation:
Perform the equivalent of the phrase:

h# 22e get-token drop execute
Note: A bus device can substitute (see set-token) a bus-specific implementation of rx@ for use by its children. This is
sometimes necessary to correctly implement its semantics with respect to bit-order and write-buffer flushing. The given User
Interface semantics of rx@ ensure that such substitutions are visible at the User Interface level.

Copyright  1992-1995 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

IEEE Draft Std P1275.6/D5 March 20, 1995

rx! (FCode Function) (o oaddr --) F 0x22F
Store an octlet to device register at oaddr.

Data is stored with a single access operation and flushes any intervening write buffers, so that the data reaches its final desti-
nation before the next "word" is executed.
Result is stored with the identical bit ordering as the input stack item.

rx! (User Interface) (o oaddr --)
Store an octlet to device register at oaddr.

Compilation:
Perform the equivalent of the phrase:

h# 22f get-token if compile, else execute then

Interpretation:
Perform the equivalent of the phrase:

h# 22f get-token drop execute
Note: A bus device can substitute (see set-token) a bus-specific implementation of rx! for use by its children. This is
sometimes necessary to correctly implement its semantics with respect to bit-order and write-buffer flushing. The given User
Interface semantics of rx! ensure that such substitutions are visible at the User Interface level.

wxjoin (w.lo w.2 w.3 w.hi -- o) F 0x244
 Join four doublets to form an octlet.

Combine the sixteen least significant bits of each operand to form an octlet. Other operand bits are ignored.

x, (o --) F 0x245
Compile an octlet, o, into the dictionary (doublet-aligned).

x@ (oaddr -- o) F 0x246
Fetch octlet from an octlet aligned address.

x! (o oaddr --) F 0x247
Store octlet to an octlet aligned address.

/x (-- n) F 0x248
.Number of address units in an octlet, typically eight.

/x* (nu1 -- nu2) F 0x249
Multiply nu1 by the value of /x.

xa+ (addr1 index -- addr2) F 0x24A
Increment addr1 by index times the value of /x.

xa1+ (addr1 -- addr2) F 0x24B
Increment addr1 by the value of /x.

xbflip (oct1 -- oct2) F 0x24C
Reverse the bytes within an octlet.

xbflips (oaddr len --) F 0x24D
Reverse the bytes within each octlet in the given region.

The region begins at oaddr and spans len bytes. The behavior is undefined iflen is not a multiple of /x.

Copyright  1992-1995 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

IEEE Draft Std P1275.6/D5 March 20, 1995

xbsplit (o -- b.lo b.2 b.3 b.4 b.5 b.6 b.7 b.hi) F 0x24E
Split an octlet into 8 bytes.

The bits of greater significance than the eight least significant bits of each of the eight resulting values shall be zero.

xlflip (oct1 -- oct2) F 0x24F
Reverse the quadlets within an octlet.

The bytes within each quadlet are not reversed.

xlflips (oaddr len --) F 0x250
Reverse the quadlets within each octlet in the given region.

The bytes within each quadlet are not reversed. The region begins at oaddr and spans len bytes. The behavior is undefined if
len is not a multiple of /x.

xlsplit (o -- quad.lo quad.hi) F 0x251
Split on octlet into 2 quadlets.

The bits of greater significance than the thirty-two least significant bits of each of the two resulting values shall be zero.

xwflip (oct1 -- oct2) F 0x252
Reverse the doublets within an octlet.

The bytes within each doublet are not reversed.

xwflips (oaddr len --) F 0x253
Reverse the doublets within each octlet in the given region.

The bytes within each doublet are not reversed. The region begins at oaddr and spans len bytes. The behavior is undefined if
len is not a multiple of /x.

xwsplit (o -- w.lo w.2 w.3 w.hi) F 0x254
Split an octlet into 4 doublets.

 The bits of greater significance than the sixteen least significant bits of each of the four resulting values shall be zero.

5.2. 64-Bit Changes
The following FCode function run-time definition is modified from the core specification:
b(lit) (-- o) F 0x10

(F: /FCode-num32/ --)
Numeric literal FCode. Followed by FCode-num32.

Note: See the core specification for the complete definition ofb(lit).

FCode Evaluation: (F: /FCode-num32/ --)
The definition is unchanged from the core specification.

Run-Time:
Return o, the sign-extended 64-bit number with the same signed numerical value as the FCode-num32.

