
ARM Processor Binding

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

ARM Processor Binding to:

IEEE 1275-1994

Standard for Boot

(Initialization, Configuration)

Firmware

Revision: 0.3 DRAFT

Date: November 5, 1997

PRELIMINARY

ARM Processor Binding

i of 18 Preliminary November 5, 1997 Revision 0.3 DRAFT

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Purpose of this ARM Processor Binding

This document specifies the application of Open Firmware to an ARM Processor, including requirements and
practices to support unique firmware specific to an ARM Processor. The core requirements and practices
specified by Open Firmware must be augmented by processor-specific requirements to form a complete
specification for the firmware implementation for a ARM Processor. This document establishes such additional
requirements pertaining to the processor and the support required by Open Firmware.

Task Group Members

The ARM Processor Binding team members were the following:

Mitch Bradley, FirmWorks

Greg Hill (editor), FirmWorks

Trademarks

The following terms, denoted by a registration symbol (®) or trademark symbol(™) on the first occurrence in
this publication, are registered trademarks or trademarks of the companies as shown in the list below:

Revision History

Trademark Company

Revision Date Changes

0.1 July 1, 1997 Initial, unapproved release.

0.2 August 19, 1997 Added the virtual address region 0x0000.0000 - 0x0000.1000
to the virtual space consumed by Open Firmware at the hand-
off to a client program.

0.3 November 5, 1997 Clarified Open Firmware’s unmapping and releasing of the
unused portion of the client program load space after pro-
gram preparation for execution has been completed.

ARM Processor Binding

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

 . . . 2
 . . . 2
. . . . 2
. . . . 2
 . . . 2

 . . . 3
 3
. . . . 3
. . . . 3
. . . . 3
. . . 3
. . . 3
 . . 4
 . . . 4
 . . . 5
 . . 5
. . . 6
. . . . 6
 . . . 6
 . . . 6
 . . . 6

. . . . 7
. . . . 7
. . . . 8
. . . .
 . . . 9
 . . . 9
 . . . 9
. . . 10
. . . 10
. . . 11
Table of Contents

1. Overview. 1
2. References and Terms. 1

2.1 References. 1
2.2 Terms . 1

3. Data Formats and Representations . 1
4. Memory Management. 2

4.1 Open Firmware’s Use of Memory .
4.1.1 Virtual-Mode .
4.1.2 Client Interface .

4.1.2.1 Open Firmware Rules .
4.1.2.2 Client Program Rules .

5. Device Tree. 2
5.1 "/cpus" node. .

5.1.1 Physical Address Formats and Representations .
5.1.1.1 Numerical Representation .
5.1.1.2 Text Representation .
5.1.1.3 Unit Address Representation .

5.1.2 "/cpus" node Properties.
5.2 "/cpus/cpu" Node .

5.2.1 "/cpus/cpu" Node Properties .
5.2.1.1 TLB Properties .
5.2.1.2 Internal (L1) Cache Properties .

5.2.2 "/cpus/cpu" Node Methods .
5.3 "/chosen" Node .
5.4 Memory Management Unit.

5.4.1 Memory Management Unit Properties .
5.4.2 Memory Management Unit Methods. .

5.5 Ancillary (L2, L3 ….) Cache Node Properties .
6. Client Interface Requirements .7

6.1 Client Program Loading .
6.1.1 Load Address .
6.1.2 Client Program Header .

6.2 Initial Program State . 9
6.2.1 Initial Register Values .
6.2.2 Initial Stack .
6.2.3 Client Interface Calling Convention .
6.2.4 Client Program Arguments .
6.2.5 Trap table .
6.2.6 Virtual address space and memory allocation .
November 5, 1997 Revision 0.3 DRAFT Preliminary ii of 18

ARM Processor Binding

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
6.2.7 Memory Cache(s) . 11
6.2.8 Interrupt Sharing . 11

6.3 Additional Client Interface Services. 12
6.4 Client Callbacks . 12

6.4.1 Virtual Address Translation Assist Callbacks . 13
6.4.2 Claim and Release Callbacks. 14
6.4.3 Interrupt Callback . 16

7. User Interface Requirements . 17
7.1 Machine Register Access . 17

7.1.1 Integer Registers . 17
7.1.2 Floating-Point Registers . 18
7.1.3 SCC Registers . 18

7.2 ROM Upgrade Method . 18
7.2.1 net-flash (--) . 18

7.3 Configuration Variables . 18
iii of 18 Preliminary November 5, 1997 Revision 0.3 DRAFT

ARM Processor Binding

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

, plus

-

s or,

e
er or not
s that
l

.

1. Overview
This document specifies the application of IEEE Std 1275-1994 Standard for Boot (Initialization, Configuration)
Firmware, Core Practices and Requirements to computer systems that use the Advance RISC Machine (ARM)
Instruction Set Architecture, including instruction-set-specific requirements and practices for debugging, client
program interface and data formats. An implementation of Open Firmware for ARM shall implement the core
requirements as defined in [1] and the ARM-specific extensions described in this binding.

2. References and Terms

2.1. References
This standard shall be used in conjunction with the following publications. When the following standards are
superseded by an approved revision, the revision shall apply.

[1] IEEE Std 1275-1994 Standard for Boot (Initialization, Configuration) Firmware, Core Practices and
Requirements.

[2] The ARM Architecture, 1/e, Dave Jagger, Prentice Hall, March, 1997, (ISBN 0-13-736299-4).

[3] a.out file format as defined in the file include/sys/exec_aout.h of the NetBSD distribution.
http://www.netbsd.org.

2.2. Terms
This standard uses technical terms as they are defined in the documents cited in “References” on page 1
the following terms:

core specification: Synonym for IEEE Std 1275-1994 Standard for Boot (Initialization, Configuration)
Firmware, Core Practices and Requirements (i.e. the standard that specifies the system-independent and bus
independent requirements for Open Firmware).

Open Firmware: The firmware architecture defined by IEEE Std 1275-1994 and its applicable supplement
when used as an adjective, a software component compliant with such an architecture.

virtual address: The address that a program uses to access a memory location or memory-mapped devic
register. Depending on the presence or absence of memory mapping hardware in the system, and wheth
that mapping hardware is enabled, a virtual address may or may not be the same as the physical addres
appears on an external bus. Unless otherwise noted, all addresses mentioned in this document are virtua
addresses.

3. Data Formats and Representations
The cell size shall be 32 bits. Number ranges for n, u, and other cell-sized items are consistent with 32-bit,
two's-complement number representation.

The required alignment for items accessed with a-addr addresses shall be four-byte aligned (i.e. a multiple of 4)

Each operation involving a qaddr address shall be performed with a single 32-bit access to the addressed
location; similarly, each waddr access shall be performed with a single 16-bit access. This implies four-byte
alignment for qaddrs and two-byte alignment for waddrs.
November 5, 1997 Revision 0.3 DRAFT Preliminary 1 of 18

ARM Processor Binding

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

(i.e.
the OS).

ess

ble to
ddress

ntation.
4. Memory Management

4.1. Open Firmware’s Use of Memory
Open Firmware shall use the memory resources within the virtual space beginning at 0xF700.000 whose size is
0x0100.0000.

4.1.1. Virtual-Mode
Open Firmware shall operate with the memory management unit enabled so that Open Firmware and its client
share a single virtual address space. This binding provides interfaces to allow Open Firmware and its client to
ensure that this single virtual address model can be maintained.

4.1.2. Client Interface
Client interface services are invoked essentially as “subroutine” calls to Open Firmware. Hence, the client
interface executes in the environment of its client, including any translations that the OS has established
addresses passed in to the client interface are assumed to be valid virtual addresses within the scope of

Note: If a client program takes control of memory management and address translation and wishes to
continue using client interface services, the client program must establish a callback handler as
described in “Client Callbacks” on page 12.

In addition to using existing translations, the Client Interface might require the establishment of new translations
(e.g. due to map-in calls during open time), or the removal of old translations (e.g. during map-out calls
during close time). Since this requires altering the client’s translation resources (e.g. page tables), Open
Firmware cannot know how to perform these updates.

4.1.2.1. Open Firmware Rules
The following rules let clients (i.e. target operating systems) know where Open Firmware lives in the addr
space.

• Open Firmware shall maintain the value of the "translations" property of /mmu (see Section 5.4.1)

• Open Firmware’s claim methods shall not allocate more pages than are necessary to satisfy the request.

• When a client executes set-callback, Open Firmware shall attempt to invoke the translate callback. If
the translate callback is implemented, Open Firmware shall cease use of address translation hardware,
instead using the client callbacks for changes to address translation.

4.1.2.2. Client Program Rules
• Client programs that take control of the management of address translation hardware and expect to be a

subsequently invoke Open Firmware client services must provide callbacks to assist Open Firmware in a
translation (see Section 6.4.1).

• A client program shall not directly manipulate any address translation hardware before it either:

a) Ceases to invoke OF client services, or

b) Issues a set-callback to install the translate callback.

Note: The intended sequence is that a client program will first issue a set-callback and then take
control of address translation hardware.

5. Device Tree
This section describes the processor-related nodes of the device tree of an ARM Open Firmware impleme
2 of 18 Preliminary November 5, 1997 Revision 0.3 DRAFT

ARM Processor Binding

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

al

ss

by
5.1. "/cpus" Node
There shall be a node named "cpus" which is a direct child of the root node.

The purpose of this node is to contain other "cpu" nodes and to define an address space by which individual
"cpu" nodes can be distinguished from one another. This anticipates the possibility of multi-processor ARM
systems in the future.

5.1.1. Physical Address Formats and Representations

5.1.1.1. Numerical Representation
The numerical representation of a child’s address shall be a single binary integer in the range 0 … N-1, where
N is the maximum number of CPUs supported by the system architecture.

5.1.1.2. Text Representation
The text representation of a child’s address shall be the ASCII hexadecimal number corresponding to the
numerical representation of the address.

Conversion of the hexadecimal number from text representation to numeric representation shall be case
insensitive, and leading zeros shall be permitted but not required.

Conversion from numeric representation to text representation shall use the lower case forms of the hexadecim
digits in the range a…f, suppressing leading zeros.

5.1.1.3. Unit Address Representation
A processor’s “unit-address” (i.e. the first component of its "reg" value) is the interprocessor interrupt
destination identifier used by the platform. For a uni-processor platform, the “unit-address” shall be zero.

5.1.2. "/cpus" Node Properties
The following properties shall be created within the "cpus" node.

"name"

Standard prop-name to define the name of the node.

prop-encoded-array: Text string, encoded as with encode-string.

The value of this property shall be "cpus".

"#address-cells"

Standard prop-name to define the number of cells required to represent the physical addresses for the
"cpu" nodes (i.e. the children of the "cpus" node).

prop-encoded-array: Integer constant 1, encoded as with encode-int.

The value of "#address-cells" for the "cpus" node shall be 1.

"#size-cells"

Standard prop-name to define the number of cells necessary to represent the length of a physical addre
range.

prop-encoded-array: Integer constant 0, encoded as with encode-int.

The value of "#size-cells" for the "cpus" node is 0 because the processors that are represented
the "cpu" nodes do not consume any physical address space.

5.2. "/cpus/cpu" Node
Each CPU in the system shall have a node describing it as follows.
November 5, 1997 Revision 0.3 DRAFT Preliminary 3 of 18

ARM Processor Binding

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

used

Section
5.2.1. "/cpus/cpu" node properties
"name"

Standard prop-name to define the name of the node.

prop-encoded-array: Text string, encoded as with encode-string.

The value of this property shall be "cpu".

"device_type"

Standard prop-name to specify the implemented interface.

prop-encoded-array: Text string, encoded as with encode-string.

The value of this property shall be "cpu".

"reg"

Standard prop-name to specify the node’s addressable resources.

prop-encoded-array: an integer encoded as with encode-int.

The value of this property shall be a one-cell integer representing the interrupt dispatch number that is
to direct inter-processor interrupts to this CPU.

For a uniprocessor system, the value shall be 0.

"model"

Standard prop-name to define a cpu node’s model.

prop-encoded-array: Text string, encoded as with encode-string.

The value of this property shall be a string consisting of the CPU type and revision (e.g. "Strongarm
SA-110-3").

"clock-frequency"

Standard property specifying the internal processor speed of this node.

prop-encoded-array: an integer encoded as with encode-int.

The value of this property shall be an integer specifying the CPU internal clock frequency in Hertz (e.g.
235,500,000).

"bus-frequency"

Standard property specifying the speed of this processor’s bus.

prop-encoded-array: an integer encoded as with encode-int.

The value of this property shall be an integer specifying the speed in Hertz of this processor’s bus (e.g.
66,666,666).

5.2.1.1. TLB Properties
Since the ARM architecture defines the MMU as being part of the processor, the properties defined by
3.6.5 of [1] and the following MMU-related properties shall be presented under "cpu" nodes.

"tlb-size"

Standard property, encoded as with encode-int, that represents the total number of TLB entries in
decimal (e.g. 32).

"tlb-sets"

Standard property, encoded as with encode-int, that represents the number of TLB sets.

Note: The number of sets is related to, but not the same as, the number of “ways of associativity".
Specifically:
4 of 18 Preliminary November 5, 1997 Revision 0.3 DRAFT

ARM Processor Binding

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

tlb-sets * number-of-ways = tlb-size

For a fully-associative TLB, tlb-sets = 1.

For a direct-mapped TLB, tlb-sets = tlb-size.

5.2.1.2. Internal (L1) Cache Properties
The ARM architecture defines a Harvard-style cache architecture. All of the ARM cache instructions act upon a
cache “block” (also referred to as a cache “line”). The internal (also referred to as “L1”) caches of ARM
processors are represented in the Open Firmware device tree by the following properties contained under"cpu"
nodes.

"write-buffer-size"

Standard property, encoded as with encode-int, that represents the maximum number of bytes in the
write buffer (e.g. 16).

If there is no write buffer, the value shall be 0.

"d-cache-size"

Standard property, encoded as with encode-int, that represents the size of the internal data cache in
bytes (e.g. 16384).

"d-cache-block-size"

Standard property, encoded as with encode-int, that represents the size of a data cache block size, in
bytes (e.g. 32).

"d-cache-sets"

Standard property, encoded as with encode-int, that represents the number of data cache sets.

Note: The number of sets is related to, but not the same as, the number of “ways of associativity".
Specifically:

d-cache-sets * number-of-ways * d-cache-block-size = d-cache-size

For a fully-associative data cache, d-cache-sets = 1.

For a direct-mapped data cache, d-cache-sets = d-cache-size / d-cache-block-size

"i-cache-size"

Standard property, encoded as with encode-int, that represents the size of the instruction cache in bytes
(e.g. 16384).

"i-cache-block-size"

Standard property, encoded as with encode-int, that represents the size of an instruction cache block in
bytes (e.g. 32).

"i-cache-sets"

Standard property, encoded as with encode-int, that represents number of instruction cache sets.

Note: The number of sets is related to, but not the same as, the number of “ways of associativity".
Specifically:

i-cache-sets * number-of-ways * i-cache-block-size = i-cache-size

For a fully-associative instruction cache, i-cache-sets = 1.

For a direct-mapped data cache, i-cache-sets = i-cache-size / i-cache-block-size

TBD: Do we need to report which kinds of flush and clean instructions are supported?

5.2.2. "/cpus/cpu" Node Methods
open

Standard method that prepares this device for subsequent use.
November 5, 1997 Revision 0.3 DRAFT Preliminary 5 of 18

ARM Processor Binding

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

rty.

ware
 what
Section

n
close

Standard method that restores a previously-opened device to its “not in use” state.

5.3. "/chosen" Node
In addition to the standard properties defined for this node by [1], this binding defines the following prope

"cpu"

Standard property, encoded as with encode-int, that represents the ihandle of an instance of the "cpu"
node corresponding to the CPU on which the firmware is executing.

5.4. Memory Management Unit

5.4.1. Memory Management Unit Properties
To aid a client in “taking over” the translation mechanism while still enabling interaction with Open Firm
(via the client interface), the client needs to know the granularity of the virtual address space and
translations have been established by Open Firmware. In addition to the standard properties listed in
3.6.5 of [1], the following standard properties shall exist within the package to which the "mmu" property of the
/chosen package refers.

"page-size"

Standard property, encoded as with encode-int, that specifies the number of bytes in the smallest
mappable region of virtual address space.

The value of this property shall be 4096 (decimal).

"translations"

This property, consisting of sets of translations, defines the currently active translations that have bee
established by Open Firmware (e.g. using map). Each set has the following format:

(virt size phys mode)

Each value is encoded as with encode-int.

5.4.2. Memory Management Unit Methods
There are no additional methods required beyond those specified in Section 3.6.5 of [1].

5.5. Ancillary (L2, L3 ….) Cache Node Properties
Some systems might include secondary (L2) or tertiary (L3), etc. cache(s). They can be implemented as either
Harvard-style or unified. Unlike the L1 properties, that are contained within the "cpu" nodes, the properties of
ancillary caches are contained within other device tree nodes.

The following properties define the characteristics of such ancillary caches. These properties shall be contained
as a child node of one of the CPU nodes; this is to allow path-name access to the node. All "cpu" nodes that
share the same ancillary cache (including the cpu node under which the ancillary cache node is contained) shall
contain an "l2-cache" property whose value is the phandle of that ancillary cache node.

Note: The "l2-cache" property shall be used in one level of the cache hierarchy to represent the
next level. The device node for a subsequent level shall appear as a child of one of the caches in the
hierarchy to allow path-name traversal.

"device_type"

Open Firmware Standard property; the device_type of ancillary cache nodes shall be "cache".
6 of 18 Preliminary November 5, 1997 Revision 0.3 DRAFT

ARM Processor Binding

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
"cache-unified"

This property, if present, indicates that the cache at this node has a unified organization. Absence of this
property indicates that the caches at this node are implemented as separate instruction and data caches.

"i-cache-size"

Standard property, encoded as with encode-int, that represents the total size (in bytes) of the instruction
cache at this node.

"i-cache-sets"

Standard property, encoded as with encode-int, that represents number of associativity sets of the
instruction cache at this node. A value of 1 signifies that the instruction cache is fully associative.

"d-cache-size"

Standard property, encoded as with encode-int, that represents the total size (in bytes) of the data cache
at this node.

"d-cache-sets"

Standard property, encoded as with encode-int, that represents number of associativity sets of the
instruction cache at this node. A value of 1 signifies that the instruction cache is fully associative.

"l2-cache"

Standard property, encoded as with encode-int, that represents the next level of cache in the memory
hierarchy.

Absence of this property indicates that no further levels of cache are present. If present, its value is the
phandle of the device node that represents the cache at the next level.

"i-cache-line-size"

Standard property, encoded as with encode-int, that represents the internal instruction cache’s line size, in
bytes, if different than its block size.

"d-cache-line-size"

Standard property, encoded as with encode-int, that represents the internal data cache’s line size, in bytes, if
different than its block size.

Note: If this is a unified cache, the corresponding i- and d- sizes must be equal.

6. Client Interface Requirements
An ARM Open Firmware implementation shall implement a client interface (as defined in Chapter 6 of [1])
according to the specifications contained within this section.

6.1. Client Program Loading

6.1.1. Load Address
The default load address is 0xF0000000, the value of load-base. Client programs are assumed to be designed
to be loaded at 0xF0000000.

Prior to the first execution of load, the firmware shall allocate and map at least 6 MB of physical memory at
this address, unless the hardware configuration of the system makes this impossible. In that case, the firmware
shall map as much memory as practical.

Note: As described in Section 6.1.2., for most load formats, once a loaded program has been prepared
for execution, any memory in the load area that is not actually consumed by the loaded image is then
unmapped and released to the available list.
November 5, 1997 Revision 0.3 DRAFT Preliminary 7 of 18

ARM Processor Binding

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

 load

 in

le

on
se

.
o
e

o

ct

ct
6.1.2. Client Program Header
An Open Firmware implementation shall recognize the sequence of eight quadlets described below as a valid
client program header (as used by the load User Interface command in the core specification) if the
a_midmag quadlet contains the specified values. The offsets given below are from the beginning of the loaded
image.

The program image immediately follows the header. After recognizing this header, load shall:

• Synchronize the instruction and data caches from load-base to load-base + a_text + a_data + 0x20,

• Move the symbol “section” and string “section” of the symbol table from load-base + a_text + a_data +
0x20 to load-base + a_text + a_data + a_bss + 0x20.

• Zero a_bss bytes of memory beginning at load-base + a_text + a_data + 0x20,

• Release and unmap the physical memory from load-base + a_text + a_data + a_bss + a_sym +
string_size1 + 0x20 (i.e. from the end of the prepared client program memory image) to the end of the
area. (The goal of this step is to have the "available" properties in the /memory and /mmu nodes
accurately reflect the memory actually consumed by the client program prepared image.)

• Set the pc in the saved-program-state to a_entry.

• Set the remaining elements of the saved-program-state to their initial values.

Note: The above header is that used by NetBSD [3].

If the a_midmag quadlet does not contain the specified value, the behavior of the Open Firmware load
command with respect to client program recognition is as follows:

Offset Name Endianess Contents

0 a_midmag Big 0x008F010B

4 a_text Little The length in bytes of the header plus the text segment
both the file and the execution image.

8 a_data Little The length in bytes of the data segment in both the fi
and the execution image

12 a_bss Little The length in bytes of the bss segment in the executi
image. The bss segment is not stored in the file, becau
its initial contents are always zero.

16 a_sym Little The length in bytes of the symbols “section” of the file
(The symbol table in the execution image consists of tw
“sections”, one for the symbols and a second for th

strings.1)

20 a_entry Little The virtual address at which program execution is t
begin.

24 a_trsize Little The size of the text relocation table. Used only for obje
files. Contains 0 for executable files.

28 a_drsize Little The size of the data relocation table. Used only for obje
files. Contains 0 for executable files.

1 . string_size is the 32-bit, little-endian value at load-base + a_text + a_data + a_sym which
describes the length in bytes of the string “section” of the symbol table.
8 of 18 Preliminary November 5, 1997 Revision 0.3 DRAFT

ARM Processor Binding

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

d in an

ne
 by

• If the file is in Forth source format [i.e. the file begins with the characters "\ " (0x5C, 0x20)], the file shall be
interpreted as with “load-base file-size @ evaluate”, or

• If the file is FCode [i.e. the file begins with the start1 FCode token (0xF1)], the file shall be evaluated as with
“load-base 1 byte-load”, or

• If the file contains another format that an implementation chooses to support, the file should be processe
appropriate implementation-dependent manner, or

• If the file format is still not recognized, the image shall be treated as a raw binary image whose entry point is
load-base.

6.2. Initial Program State
This section defines the “initial program state”, the execution environment that exists when the first machi
instruction of a client program begins execution. Many aspects of the “initial program state” are established
init-program, which sets the saved-program-state so that subsequent execution of go will begin execution
of the client program with the specified environment.

6.2.1. Initial Register Values
Upon entry to the client program, the following registers shall contain the following values:

6.2.2. Initial Stack
Client programs shall be invoked with a valid stack pointer (sp) with at least 4K bytes of memory available for
stack growth. The stack pointer shall be 4-byte aligned.

6.2.3. Client Interface Calling Convention
To invoke a client interface service, a client program:

• Constructs a client interface argument array as specified in [1],

• Places the array’s address in r0, and

• Transfers control to the client interface handler, with the return address in r14.

A typical way of accomplishing this is:

\ First set r1 to Client Interface Handler entry point address, then:

mov r14, pc \ Establish return address pointer

mov pc, r1 \ Load pc with CIF Handler entry point

Register(s) Value
pc Entry point of loaded program.
psr Condition code values unspecified

I = 0 = interrupts enabled
F = enabled (if and only if the firmware is using fast interrupts)
T = 0, if present
M0 - M4 = SVC32 mode = 0x13

sp See Section 6.2.2
r0 See Section 6.2.3
r1,r2 See Section 6.2.4
r2 0
r3 Reserved for platform binding
r4 Reserved for platform binding
Other user
mode registers

0

November 5, 1997 Revision 0.3 DRAFT Preliminary 9 of 18

ARM Processor Binding

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

le) a
sent.

gging
not

, a
ler.
The client interface handler shall use various CPU registers as described in the following table. The term
“preserved” below means that the register shall have the same value when returning as it did when the client
interface service was invoked.

6.2.4. Client Program Arguments
The calling program may pass to the client an array of bytes of arbitrary content; if this array is present, its
address and length shall be passed in registers r1 and r2, respectively. For programs booted directly by Open
Firmware, the length of this array is zero. Secondary boot programs may use this argument array to pass
information to the programs that they boot.

Note: The Open Firmware standard makes no provision for specifying such an array or its contents.
Therefore, in the absence of implementation-dependent extensions, a client program executed directly
from an Open Firmware implementation will not be passed such an array. However, intermediate boot
programs that simulate or propagate the Open Firmware client interface to the programs that they load
can provide such an array for their clients.

Note: boot command line arguments, typically consisting of the name of a file to be loaded by a
secondary boot program followed by flags selecting various secondary boot and operating system
options, are provided to client programs via the "bootargs" and "bootpath" properties of the
"/chosen" node.

6.2.5. Trap table
In this section, save-state-and-interact means to save the CPU state to the extent possible, display (if possib
message indicating that a trap occurred, and return control to the Open Firmware user interface if it is pre

A client program that installs its own trap table entries but wishes to continue using Open Firmware debu
services should preserve the Open Firmware trap table entries for any traps that the client program does
explicitly need to handle.

Open Firmware shall use the following format for its trap table.

Register(s) Value

r0 Argument array address on client interface entry.

Result value (true or false) on client interface return.

r1-r3 Scratch registers; potentially destroyed.

r4-r12 Preserved.

r13 Stack pointer; preserved. Need not point to a valid stack upon entry. Consequently
client program need not create a valid stack prior to calling the client interface hand

r14 Contains return address and is potentially destroyed.

psr Condition codes potentially destroyed; other fields preserved.

Trap Table

0 ldr pc, [pc, #56]

4 ldr pc, [pc, #56]

8

12

…

64 & handler for Exception 0

68 & handler for Exception 1
10 of 18 Preliminary November 5, 1997 Revision 0.3 DRAFT

ARM Processor Binding

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

space

s,

icating
tick
itrary

nt
nd

Note: The specification of a definite trap table format makes it easy for client programs to determine
the addresses of the firmware’s individual trap handlers. This is useful for client programs that wish to
share the responsibility for handling traps with Open Firmware.

Typical Open Firmware trap responses are as follows:

6.2.6. Virtual address space and memory allocation
When a client program begins execution, an Open Firmware implementation’s use of any virtual address
outside of the ranges 0x0000.0000-0x0000.1000 and 0xF700.0000-0xF7FF.FFFF shall have ceased, except for
the virtual address space and associated memory where the client program is loaded (see Section 6.1.2).
Subsequently, the Open Firmware implementation shall not allocate virtual address space outside those range
except as explicitly requested by a client program.

Note: By inspecting the value of the "available" and "existing" properties in an MMU package,
if such a package exists, a client program can determine precisely which ranges of virtual address space
the firmware is using. For maximum portability, a client program ought not depend on the availability
of any particular “hardcoded” virtual address.

6.2.7. Memory Cache(s)
The caches of the processor shall be enabled when the client program is invoked. (As specified by Section
6.1.2, the I-cache must be consistent with the D-cache for all memory areas occupied by the client program.)

6.2.8. Interrupt Sharing
This section describes techniques for handling interrupts when client programs are making active use of Open
Firmware client services and device drivers.

Typically, Open Firmware implementations attempt to minimize their use of interrupts, for simplicity and
robustness. On many systems, the only Open Firmware feature that demands the use of interrupts is alarm. On
some systems, the implementation of get-msecs and sometimes ms also depend upon interrupts. (For the
Digital Network Architecture, interrupts are required for all three of those functions, although ms can be
implemented reasonably well without interrupts, at least for short durations.)

The only interrupt that is needed for these functions is a periodic timer tick. Relatively few high-level firmware
functions depend upon those low-level interrupt-dependent functions. Typically, alarm is used to poll the
console input device (usually a keyboard or a serial port) periodically to check for a “break” sequence ind
the user’s desire to interrupt the current firmware activity. If the firmware is not receiving a periodic timer
interrupt, alarm handlers will not be called. The typical result is that the user will be unable to interrupt arb
firmware activity from the console input device, but the firmware will be otherwise functional.

The most common uses for get-msecs are network protocol time-outs and device driver time-outs to preve
indefinite “hangs” when waiting for a device to respond. In many cases, when the network is responsive a
devices are working correctly, a get-msecs failure (usually caused by the firmware not receiving a periodic

Trap Type Response

Reset (in ROM) Restart Open Firmware.

External timer interrupt Implement alarm, get-msecs and perhaps ms.

Other external interrupts save-state-and-interact (Typically Open Firmware runs with these other
interrupts disabled.)

Undefined instruction Breakpoints.

Fast interrupt save-state-and-interact (but may perform other functions needed for a
specific hardware design).

Data access exception save-state-and-interact

Address exception save-state-and-interact
November 5, 1997 Revision 0.3 DRAFT Preliminary 11 of 18

ARM Processor Binding

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Open
es that
timer tick interrupt such that get-msecs always returns the same value) may not have any noticeable effect on
overall firmware operation.

Nevertheless, even though most device drivers make scarce use of alarm and get-msecs, it cannot be
guaranteed that a particular driver will not require them for a critical function. Therefore, it is prudent for client
programs that use Open Firmware services, particularly those that involve I/O, to preserve the delivery of timer
tick interrupts to the firmware.

6.3. Additional Client Interface Services
In addition to the list of client interface methods defined in Section 6.3.2 of [1], the
/openprom/client-services node shall contain the following methods.

restart
IN: [string] command
OUT: <doesn’t return>

Resets the system (as with the command reset-all) in such a way that the firmware, during its subsequent
startup sequence, will execute command instead of performing the automatic default boot process. command
is a string containing a sequence of user interface commands.

The permissible length of command may depend upon the availability of system resources such as free space
in the NVRAM that the firmware uses for storing configuration variables. In the absense of the exhaustion
of such resources for other uses, the firmware shall be able to accept command strings of at least 80 characters.

call-static-method
IN: [string] method, phandle, stack-arg1, …, stack-argP
OUT: catch-result, stack-result1, …, stack-resultQ

call-method invokes the static device method named method in the package identified by phandle. The
N_args-2 arguments associated with method, stack-arg1, …, stack-argP, are pushed onto the Forth data
stack, with stack-arg1 on top of the stack, and method is executed as with the User Interface method
$call-method, guarded by catch.

The result returned by catch is returned in catch-result. If catch-result is non-zero (meaning that an error
occurred during the execution of method), the depth of the Forth data stack is restored to its depth prior to the
execution of call-method. The values of the elements of the returned values portion of the argument array
are undefined.

If catch-result is zero, call-method pops up to K_returns-1 items from the Forth data stack into the
returned values portion of the argument array, with stack_result1 corresponding to the top of the stack.

N_args and K_returns are stored in the argument array, and may be different for different calls to
call-method. If the number of items J left on the Forth data stack as a result of the execution of method
is less than K_returns-1, only stack_result1 … stack_resultJ are modified; other elements of the returned
values portion of the argument array are unaffected. If J is greater than K_returns-1, (J - Q) additional items
are popped from the Forth data stack after setting stack_result1 … stack_resultQ, so that, in all cases, the
execution of call-method results in no net change to the depth of the Forth data stack.

A compliant Open Firmware implementation must allow at least six stack_arg and six stack_result items.

The behavior of call-static-method is undefined if method is not a static method.

6.4. Client Callbacks
If a client program takes control of timer interrupts or memory management, but needs to continue using
Firmware client services thereafter, the client program must register a callback routine that supplies servic
the firmware can use to perform the functions that the client program has subsumed.

The following subsections define those callback services.
12 of 18 Preliminary November 5, 1997 Revision 0.3 DRAFT

ARM Processor Binding

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

alls the

M

 of a
s are

 size
e

le

cture

rve
the

tion

-

de
The callback mechanism must operate in accordance with the specifications for callback, $callback, and
set-callback in [1]. In particular, the callback mechanism operates in a fashion very similar to the client
interface handler, except in the other direction (the firmware calls the client, instead of the client calling the
firmware). The client program first invokes the set-callback client service to inform the firmware of the
address of the callback handler routine. Subsequently, the firmware constructs an “argument array” and c
callback handler routine, passing the address of the argument array as an argument (in r0 for the ARM
processor).

Several of the callback services defined below refer to the system-dependent MMU page size. For the AR
processor, that page size is 4096 bytes. Under some circumstances, the ARM MMU can deal with finer
granularity than one page; specifically, it can apply a different protection to each of the four 1K sub-pages
page. The MMU-related callback services defined below do not support sub-page granularity; all operation
performed in units of one page.

6.4.1. Virtual Address Translation Assist Callbacks
map

IN: [address] phys, [address] virt, size, mode
OUT: throw-code, error

This callback service creates an address translation associating the region of virtual address space ofsize
beginning at the virtual address virt with the region of physical address of the same size beginning at th
physical address phys.

mode specifies the values for the “AP” fields and the “C” and “B” bits of a page table entry. A page tab
entry is encoded as follows:

0000.0000.0000.0000.0000.AP0d.ddd0.CB00

where:

The fields and bits shown above are in accordance with the ARM Memory Management Unit Archite
definition in [2].

The indicated access permissions apply to the entire range specified by the arguments to map, which implies
that the implementation of map must propagate the AP bits into each of the AP[0-3] sub-page access
permission fields of any second-level descriptors that are used to accomplish the translation.

The firmware must specify domain 0 for any mode arguments that it generates internally, and must prese
the domain field unchanged for any mode value that it receives as the return value from an invocation of
translate callback and subsequently passes as an argument to the map callback.

The implementation of map may use any combination of first-level and second-level descriptors to
accomplish its function, subject to the restriction that it must faithfully establish the requested transla
without changing any other extant translations that are outside the requested range.

The virt, phys, and size arguments that the caller passes to this service must be multiples of the system
dependent MMU page size.

The return value error shall be zero if the operation succeeded, or a system-specific non-zero error co
otherwise.

AP Encodes the access permissions

dddd Is the domain number

C Is the cacheable bit

B Is the bufferable bit

0 Is a bit whose value is 0

. Is punctuation used to delimit groups of 4 bits
November 5, 1997 Revision 0.3 DRAFT Preliminary 13 of 18

ARM Processor Binding

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

ndent

virtual

ll of the

e
ction
.

rve
the

U page

ts:

ber

g to
unmap
IN: [address] virt, size
OUT: throw-code

This callback service removes any address translation currently associated with the region of virtual address
space of size size beginning at the virtual address virt. Typically, this involves setting the address translation
for that virtual region to a system-specific “invalid” or “not mapped” state.

The virt and size arguments that the caller passes to this service must be multiples of the system-depe
MMU page size.

translate
IN: [address] virt
OUT: throw-code, error, [address] phys, mode

This callback service returns information about the address translation currently associated with the
address virt. If there is currently no valid translation for that virtual address, the error return value shall be a
system-specific non-zero error code and the number of return values (as indicated by the N_returns ce
argument array) shall be two. Otherwise, error shall be zero, the number of return values shall be four, phys
shall be the physical address to which virt is translated, and mode shall specify the values for the “AP” fields
and the “C” and “B” bits of a page table entry as described above under map.

The value returned in the mode result shall reflect the domain signified by the first-level descriptor and th
access permissions signified by either the section descriptor (if the virtual address is mapped by a se
descriptor) or the first sub-page (AP0) (if the virtual address is mapped by a second-level descriptor)

The firmware must specify domain 0 for any mode arguments that it generates internally, and must prese
the domain field unchanged for any mode value that it receives as the return value from an invocation of
translate callback and subsequently passes as an argument to the map callback.

The virt argument that the caller passes to this service must be a multiple of the system-dependent MM
size.

6.4.2. Claim and Release Callbacks
claim-phys

IN: [address] min_addr, [address] max_addr, size, align
OUT: throw-code, error, [address] phys_addr

This callback service allocates consecutive pages of physical RAM subject to the following constrain

• The beginning address of the first page shall be (using unsigned comparison) greater than or equal to
min_addr and less than or equal to max_addr.

• The beginning address of the first page shall be a multiple of the value of align. The value of align passed
to this callback must be a multiple of the system-dependent MMU page size.

• The size of the region shall be size bytes. The value of size passed to this callback must be a multiple of
the system-dependent MMU page size.

• The pages shall be at consecutive addresses.

• The region shall not span the boundary between the maximum unsigned number and zero.

If the allocation fails, the error return value shall be a system-dependent non-zero error code and the num
of return values (as indicated by the N_returns cell of the argument array) shall be two. Otherwise, error shall
be zero, the number of return values shall be three, and phys_addr shall be the physical address of the
beginning of the first allocated page.

There are three general possibilities for the min_addr and max_addr arguments:

• min_addr = 0, max_addr = <maximum unsigned integer>

In this case, the firmware places no constraints on the address range of the return value; it is willin
accept any physical memory that meets the alignment constraints. (This is the usual case.)
14 of 18 Preliminary November 5, 1997 Revision 0.3 DRAFT

ARM Processor Binding

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

ase is
at
ed to

 it may

icular
ss arbi-
r those
his

g
egion,

e freed
em-
viously
ram

ing

al

ber

g

g to
• min_addr = max_addr

In this case, the firmware is requesting the allocation of a specific range of physical memory. This c
rarely used; typically, when the firmware needs to use a specific page or pages of RAM, it claims th
RAM prior to the time that the client program takes control of memory allocation. This callback is us
implement the firmware "/memory" node claim method, and it is possible that a user or program
might attempt to claim a specific physical page, so this case is defined. It is of course possible that
not be possible to satisfy such a request, in which case the callback would return an error code.

If min_addr=max_addr, they must be multiples of align, otherwise it would not be possible to simulta-
neously satisfy both the alignment and range constraints.

• <otherwise>

If min_addr and max_addr differ, but min_addr is not zero or max_addr is not the maximum unsigned
integer, then the firmware is requesting the allocation of physical memory somewhere within a part
address range. The most common use of this case is for DMA-based I/O devices that cannot acce
trary addresses. For example, in systems with bus-mastering ISA devices, there is often no way fo
devices to supply DMA addresses outside the range 0 to 16 MBytes. Typically, the firmware uses t
form of constrained physical allocation only for such cases.

Since the definition of this callback service specifies that the constraint applies only to the beginnin
address of the first page of allocated memory, if the entire allocated range must fall within a certain r
the firmware must be careful to supply a value for max_addr such that the value of max_addr + size does
not extend beyond the end of the desired region.

release-phys
IN: [address] phys_addr, size
OUT: throw-code

Free consecutive pages of physical RAM, making it available for later use. The size of the region to b
is given by size. The phys_addr and size arguments passed to this callback must be multiples of the syst
dependent MMU page size. The physical RAM within the region to be freed must either have been pre
allocated by claim-phys or have already been “owned” by the firmware at the time that the client prog
took control of physical memory allocation.

claim-virt
IN: [address] min_addr, [address] max_addr, size, align
OUT: throw-code, error, [address] virt_addr

This callback service allocates consecutive page frames of virtual address space subject to the follow
constraints:

• The beginning address of the first page frame shall be (using unsigned comparison) greater than or equ
to min_addr and less than or equal to max_addr.

• The beginning address of the first page frame shall be a multiple of the value of align. The value of align
passed to this callback must be a multiple of the system-dependent MMU page size.

• The size of the region shall be size bytes. The value of size passed to this callback must be a multiple of
the system-dependent MMU page size.

• The pages frames shall be at consecutive addresses.

• The region shall not span the boundary between the maximum unsigned number and zero.

If the allocation fails, the error return value shall be a system-dependent non-zero error code and the num
of return values (as indicated by the N_returns cell of the argument array) shall be two. Otherwise, error shall
be zero, the number of return values shall be three, and virt_addr shall be the virtual address of the beginnin
of the first allocated page frame.

There are three general possibilities for the min_addr and max_addr arguments:

• min_addr = 0, max_addr = <maximum unsigned integer>

In this case, the firmware places no constraints on the address range of the return value; it is willin
accept any physical address that meets the alignment constraints. (This is the usual case.)
November 5, 1997 Revision 0.3 DRAFT Preliminary 15 of 18

ARM Processor Binding

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

y used;
 prior
ement

ssible

 partic-
ccess
A
, the
s this

g
egion,

e region

y
ntrol

rupt,

 tick
e
ks),
ack

m the
The
• min_addr = max_addr

In this case, the firmware is requesting the allocation of a specific virtual address. This case is rarel
typically, when the firmware needs to use to a specific virtual address, it claims that virtual address
to the time that the client program takes control of address allocation. This callback is used to impl
the firmware "/mmu" node claim method, and it is possible that a user or program might attempt to
claim a specific virtual address, so this case is defined. It is of course possible that it may not be po
to satisfy such a request, in which case the callback would return an error code.

If min_addr=max_addr, they must be multiples of align, otherwise it would not be possible to simulta-
neously satisfy both the alignment and range constraints.

• <otherwise>

If min_addr and max_addr differ, but min_addr is not zero or max_addr is not the maximum unsigned
integer, then the firmware is requesting the allocation of virtual address space somewhere within a
ular address range. The most common use of this case is for DMA-based I/O devices that cannot a
arbitrary addresses when used on a system with virtually-addressed DMA. For example, some DM
devices drive some number of high-order address lines to fixed values, so on a virtual-DMA system
DMA addresses for those devices must be taken from a specific region. Typically, the firmware use
form of constrained physical allocation only for such cases.

Since the definition of this callback service specifies that the constraint applies only to the beginnin
address of the first page of allocated memory, if the entire allocated range must fall within a certain r
the firmware must be careful to supply a value for max_addr such that the value of max_addr + size does
not extend beyond the end of the desired region.

release-virt
IN: [address] virt_addr, size
OUT: throw-code

Free consecutive page frames of virtual address space, making it available for later use. The size of th
to be freed is given by size. The values virt_addr and size passed to this callback must be multiples of the
system-dependent MMU page size.

The virtual address space within the region to be freed must either have been previously allocated b
claim-virt or have already been “owned” by the firmware at the time that the client program took co
of virtual address space allocation.

6.4.3. Interrupt Callback
tick

IN: [address] intsave
OUT: throw-code

This callback service notifies the client program each time that the firmware handles a timer tick inter
giving the client program a chance to schedule or perform periodic operations based upon that tick.

If the client program has registered a callback handler, the firmware shall attempt to invoke the tick
callback as part of the process of handling a timer tick interrupt. (Open Firmware typically uses timer
interrupts to implement the alarm and get-msecs features). If the client program does not implement th
tick callback, the throw-code result will be non-zero (according to the usual semantics of client callbac
in which case the firmware shall proceed with the rest of its timer tick handling process as though the callb
had not been attempted.

The firmware shall invoke the tick callback in IRQ mode with interrupts disabled.

intsave is the address of a 260-byte array of memory that is used to pass to and from the client progra
values of certain processor registers as they existed just prior to the occurrence of the tick interrupt.
firmware shall set the contents of the array as follows, prior to invoking the tick callback. Each array entry
16 of 18 Preliminary November 5, 1997 Revision 0.3 DRAFT

ARM Processor Binding

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

), the
 value.

s,

rred.

y
state

 its
te way
on

g the
is a 32-bit little-endian integer representing the saved value of an ARM CPU register.

For “banked” registers (registers for which the ARM processor has multiple copies for different modes
saved register values shall be for the register set corresponding to the mode indicated in the saved PSR

After the tick callback returns, the firmware shall proceed with the rest of its timer tick handling proces
and upon completion shall restore the state of the CPU registers to the values contained in the intsave array.
The client program's tick callback handler may alter the contents of intsave in order to cause the firmware
to restore the register state to a state that differs from the state that existed when the timer tick occu

The client program's tick callback handler must not enable interrupts during its execution, but may, b
modifying the PSR value in the intsave array, cause a delayed change in the interrupt enabled/disabled
that will take effect upon completion of the firmware's timer tick handler.

The client program's tick callback handler must not invoke any Open Firmware client services during
execution. If Open Firmware client services need to be invoked as a result of timer ticks, the appropria
to do so is for the client program to use the tick callback handler to schedule those activities for executi
after the firmware's tick handler completes (typically by modifying the intsave array).

7. User Interface Requirements
An implementation of Open Firmware for ARM shall conform to the core requirements as specified in [1] and
the following ARM-specific extensions.

7.1. Machine Register Access
The following user interface commands represent ARM registers within the saved program state. Executing the
command returns the saved value of the corresponding register. The saved value may be set by precedin
command with to; the actual registers are restored to the saved values when go is executed.

The following command displays the ARM CPU's saved program state.

.registers

Display r0 through r15 and psr.

7.1.1. Integer Registers
psr

Access saved copy of Program Status Register.

Offset
(decimal) Contents

0 PSR

4 r0

8 r1

12 r2

16 r3

… …

56 r13 (SP)

60 r14 (LR)

64 r15 (PC)
November 5, 1997 Revision 0.3 DRAFT Preliminary 17 of 18

ARM Processor Binding

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
r0 through r15

Access saved copies of integer registers.

up

Synonym for r9.

tos

Synonym for r10.

rp

Synonym for r11.

ip

Synonym for r12.

sp

Synonym for r13.

lr

Synonym for r14.

pc

Synonym for r15.

7.1.2. Floating-Point Registers
Implementation of floating point register access is optional.

f0 through f7

Access saved copies of floating point registers.

7.1.3. SCC Registers
TBD

7.2. ROM Upgrade Method
The following command is optional.

7.2.1. net-flash (--)
Reprograms the firmware from the network.

7.3. Configuration Variables
There are no ARM-specific configuration variables.
18 of 18 Preliminary November 5, 1997 Revision 0.3 DRAFT

	Task Group Members
	Trademarks
	Revision History
	Table of Contents
	1. Overview
	2. References and Terms
	2.1. References
	2.2. Terms

	3. Data Formats and Representations
	4. Memory Management
	4.1. Open Firmware’s Use of Memory
	4.1.1. Virtual-Mode
	4.1.2. Client Interface
	4.1.2.1. Open Firmware Rules
	4.1.2.2. Client Program Rules

	5. Device Tree
	5.1. "/cpus" Node
	5.1.1. Physical Address Formats and Representations
	5.1.1.1. Numerical Representation
	5.1.1.2. Text Representation
	5.1.1.3. Unit Address Representation

	5.1.2. "/cpus" Node Properties

	5.2. "/cpus/cpu" Node
	5.2.1. "/cpus/cpu" node properties
	5.2.1.1. TLB Properties
	5.2.1.2. Internal (L1) Cache Properties

	5.2.2. "/cpus/cpu" Node Methods

	5.3. "/chosen" Node
	5.4. Memory Management Unit
	5.4.1. Memory Management Unit Properties
	5.4.2. Memory Management Unit Methods

	5.5. Ancillary (L2, L3 ….) Cache Node Properties

	6. Client Interface Requirements
	6.1. Client Program Loading
	6.1.1. Load Address
	6.1.2. Client Program Header

	6.2. Initial Program State
	6.2.1. Initial Register Values
	6.2.2. Initial Stack
	6.2.3. Client Interface Calling Convention
	6.2.4. Client Program Arguments
	6.2.5. Trap table
	6.2.6. Virtual address space and memory allocation
	6.2.7. Memory Cache(s)
	6.2.8. Interrupt Sharing

	6.3. Additional Client Interface Services
	6.4. Client Callbacks
	6.4.1. Virtual Address Translation Assist Callbacks
	6.4.2. Claim and Release Callbacks
	6.4.3. Interrupt Callback

	7. User Interface Requirements
	7.1. Machine Register Access
	7.1.1. Integer Registers
	7.1.2. Floating-Point Registers
	7.1.3. SCC Registers

	7.2. ROM Upgrade Method
	7.2.1. net�flash (--)

	7.3. Configuration Variables

