
1 PowerPC Processor binding

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

PowerPC Processor binding to:

IEEE 1275-1994

Standard for Boot (Initialization,

Configuration) Firmware

Revision: 2.1 (Approved Version)

Date: November 6, 1996

PowerPC Processor binding 2

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

3 PowerPC Processor binding

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Purpose of this PowerPC Processor binding

This document specifies the application of Open Firmware to a PowerPC Processor, including requirements and
practices to support unique firmware specific to a PowerPC Processor. The core requirements and practices
specified by Open Firmware must be augmented by processor-specific requirements to form a complete
specification for the firmware implementation for a PowerPC Processor. This document establishes such
additional requirements pertaining to the processor and the support required by Open Firmware.

Task Group Members

The PowerPC Processor binding team members were the following:

Mitch Bradley, FirmWorks

Jordan Brown, SunSoft

Bob Coffin, IBM

David Kahn, Sun Microsystems, Inc.

John Kingman (editor), IBM

Luan Nguyen, Dr., IBM

Mike Segapeli, IBM

Lilian Walter, FirePower

Trademarks

The following terms, denoted by a registration symbol (®) or trademark symbol(™)
on the first occurrence in this publication, are registered trademarks or trademarks of
the companies as shown in the list below:

Trademark Company
PowerPC International Business Machines Corporation

PowerPC Processor binding 4

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Revision History

Revision Date Changes
1.01 April 18,1995 Included changes from Open Firmware Working Group Meeting

of 01/25/9
1.02 May 5,1995 Applied proposals 222, 223, 252, 253, 254, 258, 260, 261 and

263.
1.03 July 3,1995 Edited IP description in Initial Program State Section.

Applied proposals 255 and 267.
1.4 Aug. 11,1995 Include changes from Open Firmware Working Group Meeting

of 07/19/95.
Add SMP Binding to document. Rearrange Section 1.
Applied Proposals 276, 277, 278.
Removed “Openprom” Section (Moved to Platform Bindings).
Changed name of “64-bit-addressing” property to “64-bit”.

1.5 Sept. 14,1995 Fixed bad cross-references. Minor editorial changes.
1.6 Oct. 27,1995 Included changes from Open Firmware Working Group Meeting

of 09/20/95. Fixed errata. Added new ELF Section. Corrected
format of MP Section (CIS Calls).

1.7 Jan. 12,1996 Review Draft. Not formally released.
1.8 Feb. 8,1996 Included changes from Open Firmware Working Group Meeting

of 01/16/96.
Added new section (6.2.2) describing physical address formats
and representations for CPU nodes.
Applied proposal 291.
Changed the two notes in Section 12.2 to regular text since they
both contained requirements.

1.9 Feb. 9,1996 Included changes from Open Firmware Working Group Binding
Committee Meeting review of Revision 1.7 on 01/17/96 and Pro-
posal #306. Editor is now John Kingman.

1.10 Mar. 12,1996 Included changes from Open Firmware Working Group Binding
Committee Meeting review of Revision 1.9 DRAFT on 03/05/96
and Proposal #317.

2.0 July 29, 1996 (Approved Version) Included changes from the Open Firmware
Working Group Subcommittee review of Revision 1.10 DRAFT
on 06/25/96 and Proposal #363.

2.1 November 6,
1996

(Approved Version) Included changes from the Open Firmware
Working Group Subcommittee review of Proposal #390.

5 PowerPC Processor binding

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Table of Contents

1. Overview. 7
2. References and Terms. 7

2.1 References. 7
2.2 Terms . 7

3. Data Formats and Representations . 8
4. Memory Management. 8

4.1 PowerPC address translation model . 8
4.1.1 Translation requirements . 8
4.1.2 Segmented Address Translation . 9
4.1.3 Block Address Translation. 9

4.2 Open Firmware’s use of memory . 9
4.2.1 Real-Mode . 10
4.2.2 Virtual-Mode . 10
4.2.3 Device Interface (Real-Mode) . 11
4.2.4 Device Interface (Virtual-Mode) . 11
4.2.5 Client Interface (Real-Mode). 11
4.2.6 Client Interface (Virtual-Mode). 11
4.2.7 User Interface (Real-Mode) . 12
4.2.8 User Interface (Virtual-Mode) . 12

5. Properties . 13
5.1 CPU properties . 13

5.1.1 The Device Tree. 13
5.1.2 Physical Address Formats and Representations for CPU Nodes13

5.1.2.1 Numerical Representation . 13
5.1.2.2 Text Representation . 13
5.1.2.3 Unit Address Representation . 13

5.1.3 CPUS Node Properties. 13
5.1.4 CPU Node Properties . 14
5.1.5 TLB properties . 16
5.1.6 Internal (L1) cache properties . 16
5.1.7 Memory Management Unit properties. 17

5.2 Ancillary (L2,L3...) cache node properties . 17
6. Methods. 18

6.1 MMU related methods . 18
7. Client Interface Requirements . 19

7.1 Calling Conventions . 19
8. Client Program Requirements. 20

PowerPC Processor binding 6

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

8.1 Load Address . 20
8.2 Initial Program State . 20

8.2.1 Initial Register Values . 20
8.2.2 Initial Stack . 21
8.2.3 Client Interface Handler Address. 21
8.2.4 Client Program Arguments . 21

8.3 Caching . 22
8.4 Interrupts . 22
8.5 Client callbacks. 22

8.5.1 Real-Mode physical memory management assist callback 22
8.5.2 Virtual address translation assist callbacks 22

9. User Interface Requirements. 23
9.1 Machine Register Access . 23

9.1.1 Branch Unit Registers . 23
9.1.2 Fixed-Point Registers. 24
9.1.3 Floating-Point Registers . 24

10. Configuration Variables . 24
11. MP Extensions . 25

11.1 The Device Tree . 25
11.1.1 Additional Properties . 25

11.2 Initialization . 25
11.3 Client Interface Services . 25
11.4 Breakpoints . 27
11.5 Serialization . 27

7 PowerPC Processor binding

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

1. Overview
This document specifies the application ofIEEE Std 1275-1994 Standard for Boot (Initialization, Configuration)
Firmware, Core Practices and Requirements to computer systems that use the PowerPC Instruction Set
Architecture, including instruction-set-specific requirements and practices for debugging, client program interface
and data formats. An implementation of Open Firmware for PowerPC shall implement the core requirements as
defined in [1] and the PowerPC-specific extensions described in this binding.

While this document addresses the official PowerPC architecture [2], the name “PowerPC” only requires
compliance to Book I. The descriptions that follow, and the relevant sections describing translation features for
this binding, assume that the system’s PowerPC processor(s) implement the entire set of Books I-III. Some
“PowerPC” processors may implement different Book II-III features; such processors may need a variant of this
binding describing the differences to the mapping functions, etc.

2. References and Terms

2.1. References
This standard shall be used in conjunction with the following publications. When the following standards are
superseded by an approved revision, the revision shall apply.

[1] IEEE Std 1275-1994 Standard for Boot (Initialization, Configuration) Firmware, Core Practices and
Requirements.

[2] PowerPC Architecture, published by Morgan Kaufmann Publishers, Inc. (ISBN 1-55960-316-6). Also
available from IBM (Customer Reorder Number 52G7487). Updates to this document are available at
http://www.austin.ibm.com/tech/ppc-chg.html

2.2. Terms
This standard uses technical terms as they are defined in the documents cited in “References” on page7, plus
the following terms:

core, core specification: refers to IEEE Std 1275-1994 Standard for Boot (Initialization, Configuration)
Firmware, Core Practices and Requirements

effective address: The 64- or 32-bit address computed by the processor when executing a Storage Access or
Branch instruction, or when fetching the next sequential instruction. If address translation is disabled, the real
address is the same as the effective address. If address translation is enabled, the real address is determined by,
but not necessarily identical to, the effective address.

linkage area: An area within the stack that is reserved for saving certain registers across procedure calls in
PowerPC run-time models. This area is reserved by the caller and is allocated above the current stack pointer
(%r1).

Open Firmware: The firmware architecture defined by the core specification or, when used as an adjective, a
software component compliant with the core specification.

procedure descriptor: a data structure used by some PowerPC run-time models to represent a C "pointer to
procedure". The first word of this structure contains the actual address of the procedure.

real address: An address that the processor presents on the processor bus.

Real-Mode: The mode in which all addresses passed between the client and Open Firmware are real addresses.

processor bus: The bus that connects the CPU chip to the system.

PowerPC Processor binding 8

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

segmented address translation: The process whereby an Effective Address (EA) is translated into a Virtual
Address (VA) and the virtual address is translated into a Real Address (RA). (See “Segmented Address
Translation” on page 9. and Section 4.3 of Book III of [2] for more detail.)

Table of Contents (TOC): A data structure used by some PowerPC run-time models that is used for access to
global variables and for inter-module linkage. When a TOC is used, %r2 contains its base address.

virtual address (in IEEE 1275 parlance): the address that a program uses to access a memory location or
memory-mapped device register. Depending on the presence or absence of memory mapping hardware in the
system, and whether or not that mapping hardware is enabled, a virtual address may or may not be the same as
the physical (real) address that appears on an external bus. The IEEE 1275 definition of “virtual address”
corresponds to The PowerPC Architecture's definition of “effective addres.” Except as noted, this document
uses the IEEE 1275 definition of virtual address.

Virtual Address (in PowerPC parlance): An internal address within the PowerPC address translation
mechanism, used as in intermediate term in the translation of an effective address to the corresponding real
address.

Virtual-Mode: The mode in which Open Firmware and its client share a single virtual address space, and
address translation is enabled; all addresses passed between the client and Open Firmware are virtual (translated)
addresses.

3. Data Formats and Representations
The cell size shall be 32 bits. Number ranges for n, u, and other cell-sized items are consistent with 32-bit,
two's-complement number representation.

The required alignment for items accessed with a-addr addresses shall be four-byte aligned (i.e., a multiple of
4).

Each operation involving a qaddr address shall be performed with a single 32-bit access to the addressed
location; similarly, each waddr access shall be performed with a single 16-bit access. This implies four-byte
alignment for qaddrs and two-byte alignment for waddrs.

4. Memory Management

4.1. PowerPC address translation model
This section describes the model that is used for co-existence of Open Firmware and client programs (i.e.,
operating systems) with respect to address translation.

The following overview of translation is provided so that the issues relevant to Open Firmware for PowerPC can
be discussed. Details that are not relevant to Open Firmware issues (e.g., protection) are not described in detail;
the PowerPC architecture [2], particularly Book III, should be consulted for the details. For the scope of this
section, terms will be used as defined in [2].

4.1.1. Translation requirements
The default access mode of storage for load and stores (i.e., with translation disabled -- referred to as Real-
Mode) within PowerPC assumes that caches are enabled (in copy-back mode). In order to perform access to I/O
device registers, the access mode must be set to Cache-Inhibited, Guarded by establishing a translation with this
mode and enabling translation. Thus, even though most of a client program and/or Open Firmware can run with
translation disabled, it must be enabled when performing I/O.

9 PowerPC Processor binding

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

4.1.2. Segmented Address Translation
Note: the use of the term Virtual Address in this section refers to the PowerPC definition,
while the rest of the document uses the IEEE 1275 definition of virtual address. (See “Ref-
erences and Terms” on page 7.)

An Effective Address (EA) of a PowerPC processor is 64{32} bits wide. Each EA is translated into an 80{52}-
bit Virtual Address (VA) by prepending a 52{24}-bit Virtual Segment Id (VSID) to the 28 LSbs of the effective
address. On 32-bit implementations, the VSID is obtained by indexing into a set of 16 Segment Registers (SRs)
using the 4 MSbs of the EA. On 64-bit implementations, the VSID is looked up in a Segment Table using the
36 MSbs of the EA. Finally, the virtual address is translated into a Real Address (RA). This is done by
mapping the Virtual Page-Number (VPN) (bits 0-67{39} of the VA) into a Real Page Number (RPN) and
concatenating this RPN with the byte offset (12 LSbs of the VA). The mapping of VPN to RPN involves a
hashing algorithm within a Hashed Page Table (HTAB) to locate a Page Table Entry (PTE) that matches the
VPN and using that entry’s RPN component. If a valid entry is not found, a Data Storage Interrupt (DSI) or
Instruction Storage Interrupt (ISI) is signalled, depending upon the source of the access.

This process is not performed for every translation! Processors will typically have a Translation Look-aside
Buffer (TLB) that caches the most recent translations, thus exploiting the natural spatial locality of programs to
reduce the overhead of address translation. 64-bit implementations may also implement a Segment Lookaside
Buffer (SLB) for the same reasons. On most PowerPC processors, the TLB updates are performed in hardware.
However, the architecture allows an implementation to use a software-assisted mechanism to perform the TLB
updates. Such schemes must not affect the architected state of the processor unless the translation fails; i.e., the
HTAB does not contain a valid PTE for the VA and a DSI/ISI is signalled.

Note: one unusual feature of this translation mechanism is that valid translations might
not be found in the HTAB; the HTAB might be too small to contain all of the currently
valid translations. This introduces a level of complexity in the use of address translation
by Open Firmware, as discussed below.

4.1.3. Block Address Translation
To further reduce the translation overhead for contiguous regions of virtual and real address spaces (e.g., a frame
buffer, or all of real memory), the Block Address Translation (BAT) mechanism is also supported by PowerPC.
The Block Address Translation involves the use of BAT entries that contain a Block Effective Page Index
(BEPI), a Block Length (BL) specifier and a Block Real Page Number (BRPN); the architecture defines 4 BAT
entries for data (DBAT entries) and 4 BAT entries for instruction (IBAT entries)1. BAT areas are restricted to a
finite set of allowable lengths, all of which are powers of 2. The smallest BAT area defined is 128 KB (217

bytes). The largest BAT area defined is 256 MB (228 bytes). The starting address of a BAT area in both EA
space and RA space must be a multiple of the area's length.

Block Address Translation is done my matching a number of upper bits of the EA (specified by the BL value)
against each of the BAT entries. If a match is found, the corresponding BRPN bits replace the matched bits in
the EA to produce the RA.

Block Address Translation takes precedence over Segmented Address Translation; i.e., if a mapping for a
storage location is present in both a BAT entry and a Page Table Entry or HTAB, the Block Address Translation
will be used.

4.2. Open Firmware’s use of memory
Open Firmware shall use the memory resources within the space indicated by the real-base, real-
size, virt-base and virt-size Configuration Variables defined for PowerPC. As described in the

1 The 601 has a single set of BAT entries that are shared by both instruction and data accesses.

PowerPC Processor binding 10

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

applicable platform binding, a mechanism is defined to enable Open Firmware to determine if its current
configuration is consistent with the requirements of the client.

If the client program has specific requirements for physical memory or address space usage, it may establish
requirements for Open Firmware's physical and/or virtual address space usage by means of its program header.
When Open Firmware loads the client program, it inspects the program header, and if its current usage of
physical memory or virtual address space conflicts with that specified in the program header, Open Firmware
shall set the real-base, real-size, virt-base, and virt-size to the configuration variables as specified in the header
and restart itself. Real-base, real-size, virt-base, and virt-size may be specified as -1, in which case the
firmware is permitted to choose appropriate values for the variables specified as -1.

If the values of the real-size and/or virt-size configuration variables do not provide sufficient memory and/or
virtual address space for the firmware's own use, then the firmware shall not attempt to load a client program
and the condition should be reported to the user. The possibility of not being able to comply with limitations
on firmware's size should be tested as the firmware is coming up in order to handle the possibility that a user
established an unworkable limitation on the size. Clients can minimize this exposure by setting size to -1 and
allowing Open Firmware to choose the size.

A PowerPC Open Firmware binding shall support two different addressing models, depending upon the setting
of the real-mode? Configuration Variable. This variable indicates the Open Firmware addressing mode that a
client program expects; false (0) indicates Virtual-Mode, true (-1) indicates Real-Mode; the default value of
real-mode? is implementation dependent.

The management of real-mode? is analogous to little-endian?. Open Firmware determines its address-
ing mode using the value of real-mode?. If the current state of real-mode? (and hence, the current state
of Open Firmware) is incorrect, it shall set real-mode? appropriately and reset itself, possibly by executing
reset-all.

Memory that cannot be allocated for general purpose use, for example physical memory on PowerPC systems
used for interrupt vectors and implementation specific areas, shall not appear in the “available” property of
the memory node. A Client Program that needs to use such memory for its architected purpose must not claim
that area prior to use.

In the following two sections, some of conventions in Real-Mode and Virtual-Mode address translations are
described. Remaining sections describe the assumptions that Open Firmware makes about the state and control
of the system in regard to Open Firmware’s use of system resources for three Open Firmware interfaces (e.g.
Device, User and Client interfaces).

4.2.1. Real-Mode
In Real-Mode (when real-mode? is true), the use of address translations by Open Firmware and its client
are independent. Either they do not use translation, or their translations are private; they do not share any trans-
lations. All interfaces between the two must pass the real address of the data. Any data structure shared by
Open Firmware and its client that refers to virt addresses in [1], or this binding, must be real addresses.

Note: in particular, that the address of the Client interface handler, that is passed to the
client, has to be a real address.

The Configuration Variables real-base and real-size should indicate the physical memory base and size
in which Open Firmware must locate itself. In Real-Mode, the Configuration Variables virt-base and
virt-size do not have meaning and should be set to -1.

4.2.2. Virtual-Mode
When real-mode? is false, Open Firmware shall configure itself to run inVirtual-Mode. In Virtual-Mode,
Open Firmware and its client will share a single virtual address space. This binding provides interfaces to allow
Open Firmware and its client to ensure that this single virtual address model can be maintained.

11 PowerPC Processor binding

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

The Configuration Variables virt-base and virt-size should indicate the virtual address space base
address and size that Open Firmware should use. The Configuration Variables real-base and real-size
should indicate the physical memory base and size in which Open Firmware must locate itself.

4.2.3. Device Interface (Real-Mode)
While Open Firmware is performing system initialization and probing functions, it establishes and maintains its
own translations. In particular, it maintains its own Page Tables (and/or BAT entries) and handles any DSI/ISI
interrupts itself.

Note: in Real-Mode, all translations will be virt=real; the primary reason for translation is
to allow appropriate I/O accesses.

4.2.4. Device Interface (Virtual-Mode)
Open Firmware will establish its own translation environment, handling DSI/ISI interrupts as in the Real-Mode
case. However, this environment will, in general, contain translations in which virtual addresses do not equal
real addresses. The virtual address space used by Open Firmware must be compatible with its client.

Note: Since these virtual addresses will be used by the Client and/or User Interfaces (e.g.,
for pointers to its code, device-tree, etc.), their translations must be preserved until the cli-
ent OS decides that it no longer requires the services of Open Firmware.

4.2.5. Client Interface (Real-Mode)
In Real-Mode, addresses of client data are real.; the client must ensure that all data areas referred to across the
Client Interface are valid real addresses. This may require moving data to meet any requirements for contiguous
storage areas (e.g., for read/write calls). Translation shall be disabled before the client interface call is
made.

Open Firmware will typically have to maintain its translations in order to perform I/O. Since the client may be
running with translation enabled (except for the Client interface call), Open Firmware shall save the state of all
relevant translation resources (e.g., SDR1, BATs) and restore them before returning to the client. Likewise, it
may take over interrupts for its own use (e.g., for doing “lazy” allocation of BATs); it shall preserve the state of
any interrupt vectors for its client.

Since the state of the address translation system is not predictable to any interrupts, the client shall ensure that
interrupts are disabled before calling the Client Interface handler and call the handler from only one CPU at a
time. The client shall also ensure that other processors do not generate translation exceptions for the duration of
the call.

Client programs are not required to assume responsibility for physical memory management. The client program
must use the Open Firmware claim client interface service to allocate physical memory while physical memory
is managed by Open Firmware. Physical memory shall remain managed by Open Firmware until the client
program defines the real-mode physical memory management assist callbacks. Physical memory must be
managed by the client program once the client program defines the real-mode physical memory management
assist callbacks. Open Firmware shall use the client program's real-mode physical memory management assist
callbacks to allocate physical memory after the client program has assumed physical memory management.

In Real-Mode, claim methods shall not allocate more pages than are necessary to satisfy the request.

4.2.6. Client Interface (Virtual-Mode)
Client interface calls are essentially “subroutine” calls to Open Firmware. Hence, the client interface executes in
the environment of its client, including any translations that the OS has established. E.g., addresses passed in to
the client interface are assumed to be valid virtual addresses within the scope of the OS. Any DSI/ISI interrupts
are either invalid addresses or caused by HTAB “spills”. In either case, the OS has the responsibility for the
handling of such exceptions.

PowerPC Processor binding 12

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Note: addresses that the Open Firmware internal use will be those that were established
by the Device interface (or, by subsequent actions of the Client or User interface). Thus,
the client must preserve these Open Firmware translations if it takes over the virtual
memory management function.

In addition to using existing translations, the Client Interface might require the establishment of new translations
(e.g., due to map-in calls during open time), or the removal of old translations (e.g., during map-out calls
during close time). Since this requires altering the Client’s translation resources (e.g., Page Tables), possibly
handling spill conditions, Open Firmware can not know how to perform these updates.

Hence, there shall be callback services provided by the client for use by Open Firmware for such actions;
see section 8.5.2.

In order to let clients (i.e., target operating systems) know where Open Firmware lives in the address space, the
following rules shall be followed by an Open Firmware implementation for PowerPC and by client programs.

Open Firmware:

•Open Firmware shall maintain its “translations” “mmu”-node property (see section5.1.7.)
•Open Firmware’s claim methods shall not allocate more pages than are necessary to satisfy the

request.
•When a client executes set-callback, Open Firmware shall attempt to invoke the “translate” callback.

If the translate callback is implemented, Open Firmware shall cease use of address translation hard-
ware, instead using the client callbacks for changes to address translation.
The exit service must continue to work after a set-callback that takes over address translation. This
implies that Open Firmware takes responsibility for address translation hardware upon exit and must
maintain internal information about translations that it requests of the client.

Client Programs:

•Client programs that take control of the management of address translation hardware and expect to be
able to subsequently invoke Open Firmware client services must provide callbacks to assist Open
Firmware in address translation (see section 8.5.2.).

•A client program shall not directly manipulate any address translation hardware before it either a)
ceases to invoke OF client services or b) issues a set-callback to install the “translate” callback.

Note: The intended sequence is that a client program will first issue a set-callback and
then take control of address translation hardware. Address translation hardware includes
BAT entries, page table, segment registers, Machine State Register and the interrupt vec-
tors relating to translation faults.

4.2.7. User Interface (Real-Mode)
In Real-Mode, Open Firmware regains total control of the system. As with the Client interface in Real-Mode, it
should save the state of the translation resources (including interrupt vectors) upon entry and should restore
them upon exit.

4.2.8. User Interface (Virtual-Mode)
When the User interface is invoked, Open Firmware is responsible for managing the machine. Therefore, it will
take over control of any relevant interrupt vectors for its own handling. In particular, it will take over DSI/ISI
handling in order to report errors to the user for bad addresses, protection violations, etc. However, as described
above, one source of DSI/ISI may simply be HTAB spills. As with the case of map-in and map-out calls,
the User interface can not know how to handle such spill conditions, itself, or even if this is, in fact, a spill
versus a bad address.

Hence, this binding definescallback services that the client provides for use by Open Firmware; see
section 8.5.2..

13 PowerPC Processor binding

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

5. Properties
This section describes the standard properties of a PowerPC Open Firmware implementation.

5.1. CPU properties

5.1.1. The Device Tree
Open Firmware requires that the multiple instances of any device that appears more than once in the device tree
must be distinguishable by means of their “reg” properties. The “reg” property must express the “address” of
each node relative to its parent “bus”. Furthermore, the core specification says that the root node of the device
tree usually represents the “main physical bus” of the system. Thus, if processors are not directly addressable on
the main physical bus, as is expected to be the case on many/most PowerPC-based systems, the CPU nodes on
such systems may not be children of the root node but must instead be children of a pseudo-device node. In this
case, the name of the pseudo-device node, which will usually be a child of the root node, shall be “cpus”.

The “cpus” node shall have one child node of device_type “cpu” for each processor.

5.1.2. Physical Address Formats and Representations for CPU Nodes

5.1.2.1. Numerical Representation
The numerical representation of a processor’s “address” in a PowerPC system shall consist of one cell, encoded
as follows (Bit# 0 refers to the least significant bit):

where: pppppppp is an 8-bit integer representing the interprocessor interrupt identifier used by the platform.

5.1.2.2. Text Representation
The text representation of a processor’s “address” shall be an ASCII hexadecimal number in the range0...FF.

Conversion of the hexadecimal number from text representation to numeric representation shall be case
insensitive, and leading zeros shall be permitted but not required.

Conversion from numeric representation to text representation shall use the lower case forms of the hexadecimal
digits in the range a..f, suppressing leading zeros.

5.1.2.3. Unit Address Representation
A processor’s “unit-number” (i.e. the first component of its “reg” value) is the interprocessor interrupt
destination identifier used by the platform. For a uni-processor platform, the “unit-number” shall be zero.

5.1.3. CPUS Node Properties
The following properties shall be created within the “cpus” node.

“#address-cells”

Standard prop-name to define the number of cells required to represent the physical addresses for the “cpu”
nodes (i.e., the children of the “cpus” node).

Bit# 33222222
10987654

22221111
32109876

11111100
54321098

00000000
76543210

phys.lo cell: 00000000 00000000 00000000 pppppppp

PowerPC Processor binding 14

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

prop-encoded-array: Integer constant 1, encoded as with encode-int.

The value of “#address-cells” for the “cpus” nodeshall be 1.

“#size-cells”

Standard prop-name to define the number of cells necessary to represent the length of a physical address
range.

prop-encoded-array: Integer constant 0, encoded as with encode-int.

The value of “#size-cells” for the “cpus” pseudo-device node is 0 because the processors that are
represented by the cpu nodes do not consume any physical address space.

5.1.4. CPU Node Properties
For each CPU in the system, a cpu-node shall be defined as a child of“cpus.” The following properties
apply to each of these nodes. The “cpus” node shall not have “reg” or “ranges” properties.

“name”

Open Firmware standard property. The value of the is property shall be of the form: “PowerPC,<name>”,
where <name> is the name of the processor chip which may be displayed to the user.

“device_type”

Open Firmware standard property. The value of this property for CPU nodes shall be “cpu”.

“reg”

Standard prop-name to define a cpu node’s unit-address.

prop-encoded-array: an integer encoded as with encode-int.

For a cpu node, the first and only value of the “reg” property shall be the number of the per-processor
interrupt line assigned to the processor represented by the node. For a uni-processor platform, the value of
the “reg” property shall be zero.

“cpu-version”

Standard property, encoded as with encode-int, that represents the processor type. This shall be the
value obtained by reading the Processor Version Register of the CPU.

“clock-frequency”

Standard property, encoded as with encode-int, that represents the internal processor speed (in hertz) of
this node.

“timebase-frequency”

Standard property, encoded as with encode-int, that represents the rate (in hertz) at which the PowerPC
TimeBase and Decrementer registers are updated.

Note: The 601 PowerPC does not have a timebase frequency, therefore on a 601 PowerPC the value
reported in this property shall be 1 billion (1 x 109) which represents the logical rate of the real time clock.

“64-bit”

prop-encoded-array: <none>

This property, if present, indicates that the PowerPC microprocessor defined by this CPU node is a 64-bit
implementation of the PowerPC architecture. The absence of this property indicates that the microprocessor
defined by this CPU node is a 32 bit implementation of the PowerPC architecture

“64-bit-virtual-address”

prop-encoded-array: <none>

This property, if present, indicates that the PowerPC microprocessor defined by this CPU node supports the
64-bit virtual address subset of the 80-bit virtual address as defined by the PowerPC architecture. The
absence of this property indicates that the PowerPC microprocessor defined by this CPU node supports the

15 PowerPC Processor binding

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

full 80-bit virtual address defined by the PowerPC architecture. This property is only valid for 64-bit
implementations.

“603-translation”

prop-encoded-array: <none>

This property, if present, indicates that the PowerPC microprocessor defined by this CPU node uses the
PowerPC 603 defined mechanism to update its Translation Lookaside Buffers (TLBs). The absence of this
property indicates that the PowerPC microprocessor defined by this CPU node does not use the PowerPC
603 defined mechanism to update its TLBs.

“603-power-management”

prop-encoded-array: <none>

This property, if present, indicates that the PowerPC microprocessor defined by this CPU node implements
the PowerPC 603 defined power management states. The absence of this property indicates that the
PowerPC microprocessor defined by this CPU node does not support the PowerPC 603 defined power
management states.

“bus-frequency”

Standard property, encoded as with encode-int, that represents the speed (in hertz) of this processor’s
bus.

“32-64-bridge”

prop-encoded-array: <none>

This property, if present, indicates that the PowerPC microprocessor defined by this CPU node implements
the “Bridge Facilities and Instructions for 64-bit Implementations” as described in an appendix of Book III
of [2]. The absence of this property indicates that the PowerPC microprocessor defined by this CPU node
does not support these facilities and instructions.

“emulation-assist-unit”

prop-encoded-array: <none>

This property, if present, indicates that the PowerPC microprocessor defined by this CPU node implements
the emulation assist unit (EAU). The absence of this property indicates that the PowerPC microprocessor
defined by this CPU node does not implement the EAU.

“external-control”

prop-encoded-array: <none>

This property, if present, indicates that the PowerPC microprocessor defined by this CPU node implements
the External Control Facility as described in the “Optional Facilities and Instructions” appendix of Book II
of [2]. The absence of his property indicates that the PowerPC microprocessor defined by this CPU node
does not support the External Control Facility.

“general-purpose”

prop-encoded-array: <none>

This property, if present, indicates that the PowerPC microprocessor defined by this CPU node implements
the floating point instructions fsqrt, fsqrts and stfiwx. The absence of this property indicates that the
PowerPC microprocessor defined by this CPU node does not support the floating point instructionsfsqrt,
fsqrts and stfiwx.

“reservation-granule-size”

Standard property, encoded as with encode-int, that represents the reservation granule size (i.e., the
minimum size of lock variables) supported by this processor, in bytes.

“graphics”

prop-encoded-array: <none>

This property, if present, indicates that the PowerPC microprocessor defined by this CPU node implements
the floating point instructions fres, frsqrte, and fsel. The absence of this property indicates that the

PowerPC Processor binding 16

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

PowerPC microprocessor defined by this CPU node does not support the floating point instructionsfres,
frsqrte, and fsel.

“performance-monitor”

prop-encoded-array: <none>

This property, if present, indicates that the PowerPC microprocessor defined by this CPU node implements
the performance monitor functionality. The absence of this property indicates that the PowerPC
microprocessor defined by this CPU node does not support this performance monitor functionality.

“tlbia”

prop-encoded-array: <none>

This property, if present, indicates that the PowerPC microprocessor defined by this CPU node implements
the tlbia instruction. The absence of this property indicates that the PowerPC microprocessor defined by
this CPU node does not support the tlbia instruction.

5.1.5. TLB properties
Since the PowerPC architecture defines the MMU as being part of the processor, the properties defined by Sec-
tion 3.6.5 of [1] and the following MMU-related properties shall be presented under “cpu” nodes.

“tlb-size”

Standard property, encoded as with encode-int, that represents the total number of TLB entries.

“tlb-sets”

Standard property, encoded as with encode-int, that represents the number of associativity sets of the TLB.
A value of 1 indicates that the TLB is fully-associative.

“tlb-split”

This property, if present, shall indicate that the TLB has a split organization. The absence of this property
shall indicate that the TLB has a unified organization.

“d-tlb-size”

Standard property, encoded as with encode-int, that represents the total number of d-TLB entries.

“d-tlb-sets”

Standard property, encoded as with encode-int, that represents the number of associativity sets of the d-TLB.
A value of 1 indicates that the d-TLB is fully-associative.

“i-tlb-size”

Standard property, encoded as with encode-int, that represents the total number of i-TLB entries.

“i-tlb-sets”

Standard property, encoded as with encode-int, that represents the number of associativity sets of the i-TLB.
A value of 1 indicates that the i-TLB is fully-associative.

5.1.6. Internal (L1) cache properties
The PowerPC architecture defines a Harvard-style cache architecture; however, unified caches are an
implementation option. All of the PowerPC cache instructions act upon a cache “block” (also referred to as a
cache “line”). The internal (also referred to as “L1”) caches of PowerPC processors are represented in the Open
Firmware device tree by the following properties contained under “cpu” nodes.

“cache-unified”

This property, if present, indicates that the internal cache has a unified organization. Absence of this
property indicates that the internal caches are implemented as separate instruction and data caches.

“i-cache-size”

Standard property, encoded as with encode-int, that represents the total size (in bytes) of the internal
instruction cache.

17 PowerPC Processor binding

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

“i-cache-sets”

Standard property, encoded as with encode-int, that represents number of associativity sets of the
internal instruction cache. A value of 1 signifies that the instruction cache is fully associative.

“i-cache-block-size”

Standard property, encoded as with encode-int, that represents the internal instruction cache's block size,
in bytes.

“d-cache-size”

Standard property, encoded as with encode-int, that represents the total size (in bytes) of the internal
data cache.

“d-cache-sets”

Standard property, encoded as with encode-int, that represents number of associativity sets of the
internal data cache. A value of 1 signifies that the data cache is fully associative.

“d-cache-block-size”

Standard property, encoded as with encode-int, that represents the internal (L1) data cache's block size,
in bytes.

“l2-cache”

Standard property, encoded as with encode-int, that represents the next level of cache in the memory
hierarchy.

Absence of this property indicates that no further levels of cache are present. If present, its value is the
phandle of the device node that represents the next level of cache.

“i-cache-line-size”

Standard property, encoded as with encode-int, that represents the internal instruction cache's line size, in
bytes, if different than its block size.

“d-cache-line-size”

Standard property, encoded as with encode-int, that represents the internal data cache's line size, in bytes, if
different than its block size.

Note: If this is a unified cache, the corresponding i- and d- sizes must be equal.

5.1.7. Memory Management Unit properties
To aid a client in “taking over” the translation mechanism and still interact with Open Firmware (via the client
interface), the client needs to know what translations have been established by Open Firmware. The following
standard property shall exist within the package to which the “mmu” property of the /chosen package refers.

“translations”

This property, consisting of sets of translations, defines the currently active translations that have been
established by Open Firmware (e.g., using map). Each set has the following format:

(virt size phys mode)

Each value is encoded as with encode-int.

5.2. Ancillary (L2,L3...) cache node properties
Some systems might include secondary (L2) or tertiary (L3), etc. cache(s). As with the L1 caches, they can be
implemented as either Harvard-style or unified. Unlike the L1 properties, that are contained within the“cpu”
nodes, the properties of ancillary caches are contained within other device tree nodes.

The following properties define the characteristics of such ancillary caches. These propertiesshall be contained
as a child node of one of the CPU nodes; this is to allow path-name access to the node. All “cpu” nodes that

PowerPC Processor binding 18

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

share the same ancillary cache (including the cpu node under which the ancillary cache node is contained) shall
contain an “l2-cache” property whose value is the phandle of that ancillary cache node.

Note: The “l2-cache” property shall be used in one level of the cache hierarchy to rep-
resent the next level. The device node for a subsequent level shall appear as a child of one
of the caches in the hierarchy to allow path-name traversal.

“device_type”

Open Firmware Standard property; the device_type of ancillary cache nodes shall be “cache”.

“cache-unified”

This property, if present, indicates that the cache at this node has a unified organization. Absence of this
property indicates that the caches at this node are implemented as separate instruction and data caches.

“i-cache-size”

Standard property, encoded as with encode-int, that represents the total size (in bytes) of the instruction
cache at this node.

“i-cache-sets”

Standard property, encoded as with encode-int, that represents number of associativity sets of the
instruction cache at this node. A value of 1 signifies that the instruction cache is fully associative.

“d-cache-size”

Standard property, encoded as with encode-int, that represents the total size (in bytes) of the data cache
at this node.

“d-cache-sets”

Standard property, encoded as with encode-int, that represents number of associativity sets of the
instruction cache at this node. A value of 1 signifies that the instruction cache is fully associative.

“l2-cache”

Standard property, encoded as with encode-int, that represents the next level of cache in the memory
hierarchy.

Absence of this property indicates that no further levels of cache are present. If present, its value is the
phandle of the device node that represents the cache at the next level.

“i-cache-line-size”

Standard property, encoded as with encode-int, that represents the internal instruction cache's line size, in
bytes, if different than its block size.

“d-cache-line-size”

Standard property, encoded as with encode-int, that represents the internal data cache's line size, in bytes, if
different than its block size.

Note: If this is a unified cache, the corresponding i- and d- sizes must be equal.

6. Methods
This section describes the additional standard methods required of a PowerPC Open Firmware implementation.

6.1. MMU related methods
The MMU methods defined by section 3.6.5. of [1]shall be implemented by CPU nodes. The value of the
mode parameter for the relevant methods (e.g., map) shall be the value that is contained within PTEs that
control Write-through, Cache-Inhibit, Memory-coherent, Guarded and the 2 protection bits; thus, its format is:
WIMGxPP, where x is a reserved bit that shall be 0. In order for I/O accesses to be properly performed in a
PowerPC system, address ranges that are mapped by map-in shall be marked as Cache-Inhibited, Guarded.

19 PowerPC Processor binding

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

The default mode (i.e., the mode specified when the value of themode argument is -1) for the map-in and
modify MMU methods of CPU nodes is defined as follows:

If the beginning of the physical address range affected by the operation refers to system memory, the values for
WIMGxPP shall be W=0, I=0, M=0, G=1, PP=10.

If the beginning of the physical address range affected by the operation refers to an I/O address, the values for
WIMGxPP shall be W=1, I=1, M=0, G=1, PP=10.

7. Client Interface Requirements
A PowerPC Open Firmware implementation shall implement a client interface (as defined in chapter 6 of [1])
according to the specifications contained within this section.

7.1. Calling Conventions
To invoke a client interface service, a client program constructs a client interface argument array as specified in
the core Open Firmware document, places its address in r3 and transfers to the client interface handler, with
the return address in lr. (A typical way of accomplishing this is to copy the client interface handler's address
into ctr and executing a bctrl.)

The term “preserved” below shall mean that the register has the same value when returning as it did when the

call was made.

Notes
1. Only the non-volatile fields (cr2-cr4) need to be preserved.

2. As defined by section 6.3.1. of [1].

3. Other special purpose registers

Register(s) Value -- real-mode Value -- virt-mode Notes
msr client interface shall preserve client interface shall not modify
cr client interface shall preserve same as real-mode 1
r1-r2 client interface shall preserve same as real-mode
r3 argument array address on cli-

ent interface entry
same as real-mode 2

result value (true or false)
on client interface return

same as real-mode 2

r13-r31 client interface shall preserve same as real-mode

sprg0-
sprg3

client interface shall preserve client interface shall not modify

fpscr client interface shall preserve same as real-mode

f0-f31 client interface shall preserve same as real-mode

lr,
ctr,
xer

undefined same as real-mode

sr0-sr15 client interface shall preserve client interface shall not modify
Other SPRs client interface shall preserve same as real-mode 3

Table 1. Register usage conventions

PowerPC Processor binding 20

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

The client interface handler shall perform the service specified by the contents of the argument array that begins
at the address in r3, place the return value (indicating success or failure of the attempt to invoke the client
interface service) back into r3, and return to the client program. This is typically done by a Branch to Link
Register (blr).

The client interface handler shall preserve the contents of the Stack Pointer (r1), TOC Pointer (r2), Condition
Register (cr) all non-volatile registers (r13-r31) and all special purpose registers except lr, ctr and xer.

The preservation of r2 allows TOC-based client programs to function correctly. Open Firmware shall not
depend upon whether its client is TOC-based or not. If the client interface handler, itself, is TOC-based, it must
provide for the appropriate initialization of its r2.

8. Client Program Requirements

8.1. Load Address
The client’s load address is specified by the value of theload-base Configuration Variable. The value of
load-base defines the default load address forclient programs when using the load method. Load-base shall
be a real address in real mode or a virtual address in virtual mode. Note that this address represents the area
into which the client program file will be read byload; it does not correspond to the addresses at which the
program will be executed. All of physical memory from load-base to either the start of Open Firmware physical
memory or the end of physical memory, whichever comes first, shall be available for loading the client program.

8.2. Initial Program State
This section defines the "initial program state", the execution environment that exists when the first machine
instruction of a client program of the format specified above begins execution. Many aspects of the "initial
program state" are established by init-program, which sets the saved program state so that subsequent
execution of go will begin execution of the client program with the specified environment.

8.2.1. Initial Register Values
Upon entry to the client program, the following registers shall contain the following values:

Register(s) Value Notes
msr EE=0, interrupts disabled 1

PR=0, supervisor state
FP=1, floating point enabled
ME=1, machine checks enabled
FE0,FE1=0, floating point exceptions disabled
IP, see section 8.4.
IR,DR, see section 4.2.1.
SF=0, 32-bit mode
ILE,LE, little endian support 2

r1 see section 8.2.2.
r2 0 3
r3 reserved for platform binding 4
r4 reserved for platform binding 4
r5 see section 8.2.3.

Table 2. Initial Register Values

21 PowerPC Processor binding

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Notes:
1. Open Firmware will typically require the use of external interrupts for its user interface.
However, when a client program is invoked, external interrupts shall be disabled. If a cli-
ent program causes the invocation of the user interface, external interrupts may be re-
enabled.

2. The 601 processor uses a different mechanism for controlling the endian-mode of the
processor. On the 601, the LE bit is contained in the HID0 register; this bit controls the
endian-mode of both program and privileged states.

3. Open Firmware does not make any assumptions about whether a client program is
TOC-based or not. It is the responsibility of the client program to set r2 to its TOC, if
necessary.

4. As defined in the relevant section of the platform binding.

8.2.2. Initial Stack
Client programs shall be invoked with a valid stack pointer (r1) with at least 32K bytes of memory available
for stack growth. The stack pointer shall be 16-byte aligned, reserving sufficient room for a linkage area (32
bytes above the address in r1). If the system is executing in Real-Mode, the value in r1 is a real address; if in
Virtual-Mode, the address in r1 is a mapped virtual address.

8.2.3. Client Interface Handler Address
When client programs are invoked, r5 shall contain the address of the entry point of the client interface
handler. If the system is executing in Real-Mode, the value in r5 is a real address; if in Virtual-Mode, the
address in r5 is a mapped virtual address.

Note: this address points to the first instruction of theclient interface handler, not to a pro-
cedure descriptor.

8.2.4. Client Program Arguments
The calling program may pass to the client an array of bytes of arbitrary content; if this array is present, its
address and length shall be passed in registers r6 and r7, respectively. For programs booted directly by Open
Firmware, the length of this array is zero. Secondary boot programs may use this argument array to pass
information to the programs that they boot.

Note: The Open Firmware standard makes no provision for specifying such an array or its
contents. Therefore, in the absence of implementation-dependent extensions, a client pro-
gram executed directly from an Open Firmware implementation will not be passed such
an array. However, intermediate boot programs that simulate or propagate the Open
Firmware client interface to the programs that they load can provide such an array for
their clients.

Note: boot command line arguments, typically consisting of the name of a file to be
loaded by a secondary boot program followed by flags selecting various secondary boot
and operating system options, are provided to client programs via the “bootargs” and
“bootpath” properties of the “/chosen” node.

r6,r7 see section 8.2.4.
Other
user mode
registers

0

Register(s) Value Notes

Table 2. Initial Register Values

PowerPC Processor binding 22

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

8.3. Caching
The caches of the processor shall be enabled when the client program is called. The I-cache shall be consistent
with the D-cache for all memory areas occupied by the client program. Memory areas allocated on behalf of the
client program shall be marked as cacheable. Accesses to “I/O” devices (especially, to devices across “bridges”)
shall be made with the register access words (e.g., %rl@). All processors in a SMP system shall have the same
consistent view of all memory areas (for data references). No more than one processor shall have a modified
copy of the same data area in its cache when the client program is called.

Note: If firmware makes cachable M=0 data references from different processors on a
SMP system, it may have to perform additional cache management to meet this require-
ment.

8.4. Interrupts
Open Firmware requires that interrupts be “vectored” to its handlers when it is in control of the processor; this
will occur when the User Interface is running. Client Interface calls are considered to execute in the
environment of the client, and hence, Open Firmware does not assume ownership of interrupts.

Note: There used to be a paragraph here that said an area of memory was to be reserved
by the client program for the exclusive use of Open Firmware. This requirement has been
removed, since the sharing of interrupt vectors on these platforms has not been found to
be practical.

Open Firmware shall save and restore the first location of each interrupt that it wants to "take over". I.e.,
whenever Open Firmware needs the use of an interrupt, it shall save the current contents of the corresponding
entry point and replace that location with a branch to its entry point. When Open Firmware returns control, it
shall restore the RAM location to its original contents.

8.5. Client callbacks
This section defines the callback mechanism that allows Open Firmware to access services exported to it by the
client program. As described in section 6.3.2 and the glossary entries for callback and $callback in [1],
the callback mechanism follows the same rules as those of Client interface calls. I.e., an argument array is
constructed by Open Firmware and the address of that array is passed (via r3) to the client’s callback routine;
the address of the callback routine is supplied to Open Firmware by means of the set-callback client call.

If the system is running in Real-Mode, the address of the client callback routine shall be a real address; if it is
running in Virtual-Mode, the client callback routine address shall be a mapped virtual address.

8.5.1. Real-Mode physical memory management assist callback
Once the control of physical memory is transferred to the client program, Open Firmware which is running in
real-mode shall use the callback service provided by the client program to allocate physical memory. Client
programs which expect Open Firmware to operate in read-mode must implement the following physical memory
management client callback routines for Open Firmware:

alloc-real-mem
IN: [address] min_addr, [address] max_addr, size, mode
OUT: error,[address] real_addr

This routine allocates a contiguous physical memory of size bytes within the address range between min_addr
and max_addr. The mode parameter contains the WIMGxPP bits as defined in section 6. A non-zero error
code shall be returned if the mapping can not be performed. If error code is zero (i.e. allocation is succeeded)
the routine returns the base address of the physical memory allocated for Open Firmware.

8.5.2. Virtual address translation assist callbacks
As mentioned in section 4.2.6., when Open Firmware is in Virtual-Mode, client programs that take over control
of the system’s memory management must provide a set of callbacks that implement MMU functions. This

23 PowerPC Processor binding

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

section defines the input arguments and return values for these callbacks. The notation follows the style used in
chapter 6 of the Open Firmware specification [1].

map
IN: [address] phys, [address] virt, size, mode
OUT: throw-code, error

This routine creates system-specific translation information; this will typically include the addition of PTEs
to the HTAB. If the mapping is successfully performed, a value of zero shall be placed in the error cell of the
argument array; a non-zero error code shall be returned in error if the mapping can not be performed.

unmap
IN: [address] virt, size
OUT: throw-code

The system removes any data structures (e.g., PTEs) for the virtual address range.

translate
IN: [address] virt
OUT: throw-code, error, [address] real, mode

The system attempts to compute the real address (real) to which the virtual address (virt) is mapped. If the
translation is successful, a PTE shall be placed into the HTAB for this translation, the number of return cells
shall be four with the resulting real address returned in real and error shall be set to false (0). If the trans-
lation is not successful, the number of return cells shall be two and error shall be set to a non-zero error code.

This call shall be made when Open Firmware handles a DSI/ISI within the User interface. A successful result
of the translate call indicates that Open Firmware can complete the interrupted access; a failure indicates that
an access was made to an invalid address.

9. User Interface Requirements
An implementation of Open Firmware for PowerPC shall conform to the core requirements as specified in [1]
and the following PowerPC-specific extensions.

9.1. Machine Register Access
The following user interface commands represent PowerPC registers within the saved program state. Executing
the command returns the saved value of the corresponding register. The saved value may be set by preceding
the command with to; the actual registers are restored to the saved values when go is executed.

The following command displays the PowerPC CPU'ssaved program state.

.registers

9.1.1. Branch Unit Registers
%cr

Access saved copy of Condition Register.

%ctr

Access saved copy of Count Register.

%lr

Access saved copy of Link Register.

%msr

Access saved copy of the low order 16 bits of SRR1 register.

%srr0 and %srr1
Access saved copy of Save/Restore Registers.

PowerPC Processor binding 24

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

%pc

An alias of "%srr0"

9.1.2. Fixed-Point Registers
%r0 through %r31

Access saved copies of fixed-point registers.

%xer

Access saved copy of XER register.

%sprg0 through %sprg3
Access saved copies of SPRG registers.

9.1.3. Floating-Point Registers
Unlike the other registers, the floating point unit registers are not normally saved, since they are not used by
Open Firmware. The following access words, therefore, access the registers directly.

%f0 through %f31
Access floating point registers.

%fpscr

Access Floating Point Status and Control Register.

10. Configuration Variables
In addition to the standard Configuration Variables defined by the core Open Firmware document [1], the
following Configuration Variables shall be implemented for PowerPC:

"little-endian?"

This boolean variable controls the endian-mode of Open Firmware. If true (-1), the endian-mode is Little-
Endian; if false (0), the endian-mode is Big-Endian. The default value is implementation dependent.

"real-mode?"

This boolean variable controls the address translation mode of Open Firmware. If true (-1), the addressing
mode is Real-Mode; if false (0), the addressing mode is Virtual-Mode. The default value is
implementation dependent.

"real-base"

This integer variable defines the starting physical address to be used by Open Firmware.

"real-size"

This integer variable defines the size of the physical address space which can be used by Open Firmware.

"virt-base"

This integer variable defines the starting virtual memory address which can be used by Open Firmware.

"virt-size"

This integer variable defines the size of the virtual address space which can be used by Open Firmware.
"load-base"

This integer variable defines the default load address forclient programs when using the load method. The
default value is implementation dependent.

25 PowerPC Processor binding

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

11. MP Extensions
This section specifies the application of Open Firmware to PowerPC multiprocessor (MP) systems. An Open
Firmware implementation for an MP PowerPC system shall implement the extensions described in this section
as well as the requirements described in previous sections of this binding.

11.1. The Device Tree
This section defines an additional property under the “/chosen” Node for a MP extension. Refer to Section 5.1.1.
for more details about the device tree structure for a MP Configuration.

11.1.1. Additional Properties
"/chosen" Node Properties

"cpu"

prop-name, identifies the running CPU.

prop-encode-array: An integer, encoded as with encode-int, which contains the i-handle of the CPU node
that is associated with the "running" CPU.

11.2. Initialization
Open Firmware shall select one processor, using an algorithm of its choice, to be the “master” processor, which
performs the role of the single processor on a uniprocessor system, either booting the client or providing the
user interface. Open Firmware shall place all the remaining processors into stopped state, a state in which the
processor does not perform Open Firmware or client functions and does not interfere with the operation of the
master processor. A processor in stopped state remains in that state unless and until an executing client starts it
using the start-cpu client service defined below.

Client programs shall use the Open firmwarestart-cpu client interface service to start all processors before
it reclaims the Open Firmware memory

On machines in which a machine check on one processor is broadcast to all processors, the processors which
are either in the idle or stopped state shall not change their states due to a machine check on another processor:
Open Firmware shall not depend on the contents of the low vector (IP=0) in the event of a machine check.

The following State Diagram depicts the relationship of the Running, Stopped and Idle States to each other.
The Client Interface Service Calls are shown as how to move between the states.

FIGURE 1 State Diagram

Note: Open Firmware's memory cannot be reclaimed by a client if a CPU is in the
“stopped” or “idle” state.

11.3. Client Interface Services
The following client interface services are added for MP support on PowerPC systems. These interfaces make
the client program responsible for any Inter-CPU communication needed for these interfaces. The rationale for
this is to architecturally separate the Inter-CPU communication mechanism of the firmware from the client pro-
gram and vice versa.

start-cpu
IN: nodeid, pc, arg
OUT: none

This client interface service starts the CPU. The nodeid is the phandle of a node whose device_type is “cpu”.

Start-cpu arranges for the CPU identified by phandle in nodeid to begin executing client code at the real
address given by the pc input with an argument, arg, passed in register r3. When it begins execution, the start-

PowerPC Processor binding 26

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

ed processor shall be in the endian mode of the client program, and in real (not translated) addressing mode.
The contents of registers other than r3 are indeterminate.

 A client should not call start-cpu for the processor on which it is running, effectively restarting with a
new pc and abandoning the only client thread. A jump or branch instruction shall be used instead to achieve
the objective.

start-cpu permits more than one processor to run at the same time, enabling multi-threaded client execu-
tion. In general, an Open Firmware client shall avoid multi-threaded operation within Open Firmware. Usu-
ally, this means that client threads running on different CPUs must use mutual exclusion to prevent more than
one processor from making client service requests at any one time. The exceptions are that a client thread may
invoke either the stop-self or idle-self client services defined below at any time.

Note: The results are undefined if the CPU identified by *phandle* has already been
started (e.g it is already running and has not exited) or *phandle* is not a valid package
handle of a CPU device node.

stop-self
IN: none
OUT: none

Open Firmware places the processor on which the caller was running into the “stopped” state. The client pro-
gram is not-resumable.

Note: When an MP client program exits, one CPU invokes the exit client interface ser-
vice, the others invoke the stop-self service.

idle-self
IN: none
OUT: none

Open Firmware places the CPU on which this service was invoked into an 'idle' state, saving the *current
state* of the client program, so that the client program may be resumed.

start-cpu

stop-self

idle-self resume-cpu

Stopped Running

Idle

27 PowerPC Processor binding

November 6, 1996 Revision 2.1 (Approved Version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

A processor in idle state can be resumed using resume-cpu service defined below or restarted using
start-cpu. If the processor is resumed, it executes a normal return to the client, as if its call to idle-
self had just completed.

Note: When a client program wants to enter the firmware user interface, one CPU invokes
the enter client interface service, the others invoke the idle-self service. The ratio-
nal is that the user interface may affect the machine state in any way that it desires, there-
fore the client shall not depend on it.

resume-cpu
IN: nodeid
OUT: none

This client interface service is used to resume an *idled* CPU. The nodeid is the phandle of a CPU node in
idle state.

resume-cpu arranges for that CPU to restore the CPU’s state as saved by idle-self and begin return
to the client, completing the idle-self client service call that placed the CPU into idle state. The results are
undefined if the CPU identified by *phandle* is not in an *idle* state by a previous call to the idle-self
client interface service.

Note: When the client program is resumed via the GO (or similar) user interface com-
mand, the client program is resumed on the CPU which called the enter service; the cli-
ent program is responsible for calling the resume-cpu service to resume other idled
CPU's, if that is the desired client program behavior.

11.4. Breakpoints
If the breakpoint is taken by the firmware, without the client program's assistance, the other CPUs will continue
to run in the client program. The client program may field the breakpoint 'trap' or 'vector' and idle the other
CPUs before entering the PROM. The platform binding document has to specify how this is done to avoid loss
of state at breakpoint time.

11.5. Serialization
The firmware is a single threaded program, from the client program's point of view. Only the idle-self,
stop-self, enter and exit client interfaces may be invoked simultaneously on different CPUs.
Furthermore, only a single CPU may invoke the enter or exit client interface at any one time. The other
CPUs must use the idle-self or stop-self client interface service.

Note: The results are undefined if the client program invokes client interface services
including breakpoint traps (other than the enter/exit stop-self/idle-self case
listed above) simultaneously on more than a single CPU.

Note: Since locking mechanisms are subject to client program policy, the client program is
responsible for implementing any necessary mechanism to insure that it adheres to this
policy. Further, the client program should disable any pre-emption mechanism before call-
ing a client interface service to avoid rescheduling a thread of execution in the firmware
on a different CPU if such a mechanism exists in the client program.

