
ISA/EISA/ISA-PnP binding 1

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

ISA/EISA/ISA-PnP binding to:

IEEE Std 1275-1994

Standard for Boot

(Initialization, Configuration)

Firmware

Revision: 0.4 (Unapproved Draft)

Date: September 23, 1996

2 ISA/EISA/ISA-PnP binding

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

ISA/EISA/ISA-PnP binding 3

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Purpose of this ISA/EISA/ISA-PnP binding

This document specifies the application of Open Firmware to the bus used on the IBM® Personal
Computer/AT™, commonly called the Industry Standard Architecture (ISA) Bus, including requirements and
practices for address formats, interrupts, probing, and related properties and methods specific to the ISA Bus.

This document also specifies the application of Open Firmware to the 32 bit extension to the ISA standard,
developed by the COMPAQ®-led consortium, known as the Extended Industry Standard Architecture (EISA™).

This document also extends the resource data structures defined for Plug and Play ISA (PnP ISA) adaptor cards
to be used for configuring both legacy ISA and EISA devices.

The core requirements and practices specified by Open Firmware must be augmented by system-specific
requirements to form a complete specification for the firmware for a particular system. This document
establishes such additional requirements pertaining to the ISA/EISA Bus.

Task Group Members

The following individuals were members of the Task Group that produced this document:

Mitch Bradley, FirmWorks

Jordan Brown, SunSoft Inc.

Bob Coffin, (editor), IBM Corporation

David Kahn, Sun Microsystems

Dr. Luan Duy Nguyen, IBM Corporation

Lilian Walter, FirePower System Inc.

Registration Symbols and Trademarks

The following terms, denoted by a registration symbol (®) or trademark symbol(™)
on the first occurrence in this publication, are registered trademarks or registration
symbols of the companies as shown in the list below:

Trademark Company

COMPAQ COMPAQ Corporation.

IBM & IBM PC International Business Machines

PC/XT & PC/AT International Business Machines

All products or services mentioned in this document are identified by the trademarks, service marks, or product
names as designated by the companies who market those products. Inquiries concerning such trademarks should
be made directly to those companies.

Revision History

Revision 0.00 07/94 First version.

4 ISA/EISA/ISA-PnP binding

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Revision 0.01 10/94 Simplify first cell of reg property. Drop “m” from text representation.
Revision 0.02 01/95 Miscellaneous changes, mostly editorial. Add support for twenty-bit aliasing in

memory space.
Revision 0.03 03/21/95 Added EISA bus specification and some PnP ISA device support.
Revision 0.04 09/25/95 Added PnP ISA resource data structures and extend it to accommodate EISA

configuration.
Revision 0.05 10/11/95 Changed document format and add Table of Contents. Changed content

according to approval from the committee on 09/19/1995
Revision 0.1 02/28/96 Changed content according to approval from the committee on 01/16/96.

Changed version number from .05 to 0.1.
Revision 0.2 04/12/96 Modified physical address representation (Section 2.2.1) to reflect PnP

Format, subtractive decode property definition(Section 3.1.2), the definition
of dma-alloc(Section 3.2.1), the “name” and “reg” properties
(Section 4.1.1), changed “connectors” to “slot-names”(Section 4.1.2) and
removed the “interrupt-choices” and “dma-choices” properties because the
PnP Data Format contains the information in the dependent section
(Section 6.3.13 & 6.3.14). Numerous editorial changes.

Revision 0.3 08/08/96 Added Interrupt Mapping Reference, removed proposed PnP unit address
format, changed physical address format (‘i’ is optional and represents I/O
Address Space and ‘m’ represent Memory Address Space, changed Child
Nodes “name” , “compatible” and “reg” properties. Added “pnp-id”
property. Numerous editorial changes.

Revision 0.4 09/23/96 Added “slot-names-index ” property to Section 4.1.2. Changed wording
of “compatible” property to reflect convention to represent PnP-ISA
Adapters with multiple logical devices. Several editorial changes done.

ISA/EISA/ISA-PnP binding 5

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Table of Contents

1. Overview and References. 7
1.1 References. .7
1.2 Definitions of Terms .7

2. Bus Characteristics. 8
2.1 Address Spaces. .8

2.1.1 Memory Space. .8
2.1.2 I/O Space .8

2.2 Address Formats and Representations. .8
2.2.1 Physical Address Format: Numerical Representation.8
2.2.2 Physical Address Format: Text Representation.9
2.2.3 Correspondence between two representations.9
2.2.4 Unit Address Representation. .10
2.2.5 Open Firmware Implication. .10

2.3 Bus-specific Configuration Variables. .10
2.3.1 Format of a Probe List. .11

3. Bus Nodes . 11
3.1 Properties .11

3.1.1 Open Firmware Properties for Bus Nodes.11
3.1.2 Bus-specific Properties for Bus Nodes.12

3.2 Methods. .12
3.2.1 Standard Open Firmware-defined Methods.12
3.2.2 Bus-specific Open Firmware-defined Methods.13

4. Child Nodes . 13
4.1 Properties. .13

4.1.1 Open Firmware Properties for Child Nodes14
4.1.2 Bus-specific Properties for Child Nodes15

4.2 Bus-specific User Interface Commands .17
5. Encapsulated Drivers. 17

5.1 Naming Conventions .18
6. Data Resource Information . 18

6.1 Format of Data Resource Information. .19
6.2 Header. .19
6.3 Resource Records. .20

6.3.1 Plug and Play Version Number Record.21
6.3.2 ANSI Identifier String Record. .22
6.3.3 Unicode Identifier String Record. .22
6.3.4 Logical Device ID Record. .22
6.3.5 Compatible Device ID Record. .23
6.3.6 IRQ Format Record .23

6 ISA/EISA/ISA-PnP binding

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

6.3.7 DMA Format Record. .23
6.3.8 I/O Port Descriptor Record .24
6.3.9 Fixed Location 10-bit I/O Port Descriptor Record25
6.3.10 24-bit Memory Range Descriptor Record25
6.3.11 32-bit Memory Range Descriptor Record26
6.3.12 32-bit Fixed Location Memory Range Descriptor Record . . .27
6.3.13 Start Dependent Function Record .28
6.3.14 End Dependent Function Record. .28
6.3.15 Small Vendor Defined Record. .28
6.3.16 Large Vendor Defined Record. .28
6.3.17 End Tag Record .29

ISA/EISA/ISA-PnP binding 7

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

1. Overview and References
References and terms for the ISA/EISA/ISA-PnP binding are listed in this section.

1.1. References
This Open Firmware ISA/EISA/ISA-PnP binding standardshall be used in conjunction with the following
publications. When the following standards are superseded by an approved revision, the revisionshall apply.

[1] IEEE Std 1275-1994 Standard for Boot (Initialization, Configuration) Firmware, Core Practices and
Requirements

[2] Technical Reference, Personal Computer AT; IBM part number 6280070 [or S229-9611-00 or 6139362.]

[3] IEEE P996 Personal Computer BusStandard

[4] Extended Industry Standard Architecture Specification, Rev. 3.12, BCPR Service

[5] Plug and Play Option ROM Specification

[6] Plug and Play BIOS Specification, Ver 1.0a, May 1994

[7] Plug and Play ISA Specification, Ver 1.0a, May 1994

[8] PCI Bus Binding to IEEE 1275

[9] Open Firmware Recommended Practice - Generic Names

[10] Open Firmware Recommended Practice - Interrupt Mapping

1.2. Definitions of Terms
This standard uses technical terms as they are defined in the documents cited in "References", plus the following
terms:

Bus controller: a hardware device that implements an ISA/EISA bus.

bus node: an Open Firmware device node that represents a bus controller. In cases where a node represents the
interface, or “bridge”, between one bus and another, the node is both a bus node relative to the bus it controls,
and a child node of its parent bus. Note that an Open Firmware device node is not in itself a physical hardware
device; rather, it is a software abstraction that describes a hardware device.

child node: an Open Firmware device node that represents an ISA/EISA function. Such a node can correspond
to either a device that is “hardwired” to a planar ISA/EISA bus, or to an “add in” expansion card that is
plugged into a standard ISA/EISA expansion connector.

EISA: Extended Industry Standard Architecture

EISA device: a hardware device that connects to or “plugs in” to an EISA bus: one of a number of logically-
independent parts of an EISA device. Many EISA devices have only one function per device; in such cases, the
terms “EISA function” and “EISA device” can be used interchangeably.

ISA: Industry Standard Architecture.

ISA device: a hardware device that connects to or “plugs in” to an ISA/ EISA bus: one of a number of
logically-independent parts of an ISA device. Many ISA devices have only one function per device; in such
cases, the terms “ISA function” and “ISA device” can be used interchangeably.

PnP ISA device:a new generation of ISA cards that incorporate hardware mechanisms that enables resolution
of resource conflicts between PnP ISA cards solely by software. A PnP ISA card may have more than one
logical device, or, alternately, function.

8 ISA/EISA/ISA-PnP binding

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

2. Bus Characteristics
This section describes the ISA/EISA Bus addressing and configuration characteristics and/or attributes.

2.1. Address Spaces
ISA/EISA has two address spaces (Memory, I/O) with different addressing characteristics.

2.1.1. Memory Space
Memory Space is the primary address space of the ISA/EISA bus; it corresponds to traditional memory and
“memory-mapped” I/O.

The ISA bus allows for a 24-bit address space. The “8-bit” or “PC/XT” subset allows for a 20-bit address space,
but, since hardware protocols prevent an appropriate decoding of such devices, no special provisions need to be
made by this binding to deal with this addressing structure.

The EISA bus allows for a 32-bit address space.

2.1.2. I/O Space
I/O Space is similar to Memory Space, except that it is intended to be used with the special “I/O access”
instructions that some processors have.

The ISA/EISA bus allows for a 16-bit I/O address space. The “8-bit” subset allows for a 10-bit or 11-bit aliased
address space.

Devices are allowed to “alias” I/O addresses by ignoring all but the lower 10 bits of an I/O address. To
conserve“reg” property space, a bit (the 't' bit, for ten-bit alias) is included in the encoding of I/O addresses
to indicate that the corresponding“reg” range includes all such aliases.

Devices are also allowed to “alias” I/O addresses by ignoring all but the lower 11 bits of an I/O address. To
conserve“reg” property space, a bit (the 'v’' bit, for eleven-bit alias) is included in the encoding of I/O
addresses to indicate that the corresponding“reg” range includes all such aliases.

2.2. Address Formats and Representations
This section describes the physical address representation and the Open Firmware implications.

2.2.1. Physical Address Format: Numerical Representation
The numerical representation of an ISA/EISA addressshall consist of two cells. For the numerical address
format, the least-significant 32 bits of a cell is used. If the cell size is larger than 32 bits, any additional high-
order bits are zero. Bit #0 refers to the least-significant bit. The decode format of the physical address is as
follows:

Bit#: 33222222 22221111 11111100 00000000
10987654 32109876 54321098 76543210

phys.hi cell: 00000000 00000000 00000000 00000vti

phys.lo cell: nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn

where forphys.hi:

t is 1 if the address is 10-bit aliased (for I/O)

v is 1 if the address is 11-bit aliased (for I/O)

i is 1-bit field denoting memory or I/O space

and forphys.lo:

ISA/EISA/ISA-PnP binding 9

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

nn..nn is a 32-bit unsigned number

Encoding of field “i”:

1 denotes I/O space, in which case:

t is set if 10-bit aliasing is present.

v is set if 11-bit aliasing is present.

nn..nn must be 65535 or less.

0 denotes Memory Space, in which case:

t is always 0.

v is always 0.

nn..nn is the 32-bit Memory Space address

Note: Since the numeric representation of an ISA/EISA physical address consists of 2
address cells, and the number of cells used to encode the size field of a child's reg property
is 1(these are the IEEE 1275 defaults), explicit implementation of the standard properties
#address-cells and #size-cells need not be present.

2.2.2. Physical Address Format: Text Representation
The text representation of an ISA/EISA address is one of the following forms:

[i]tNNNN ,[i]vNNNN or [i]NNNN where the strings are an I/O Address Space

or

mNNNNNNNN where the string is a Memory Address Space

where:

NNNN is an ASCII hexadecimal number in the range 0..0xFFFF

NNNNNNNN is an ASCII hexadecimal number in the range 0..0xFFFFFFFF

t is the letter 't', whose presence indicates 10-bit aliasing for I/O Address Space

v is the letter 'v', whose presence indicates 11-bit aliasing for I/O Address Space

m is the letter 'm', indicates Memory Address Space

i is the letter 'i', whose presence is optional, indicates I/O Address Space

Note: If string does not begin in ’m’, ’i’, ’t’ or ’v’, an I/O addr ess format is assumed.

2.2.3. Correspondence between two representations
The correspondence between text representations and numerical representations is as follows:

[i][t]NNNN: corresponds to an I/O Space address with the numerical value of 0xNNNN. If 't' is
present, only the low-order 10 bits of an I/O address range is indicated and aliases are assumed for all
high-order bits within the ISA 64KB I/O address space.

The numerical value is:

i is 1

nn..nn is the value whose hex representation is NNNN

[i][v]NNNN: corresponds to an I/O Space address with the numerical value of 0xNNNN. If 'v' is present,

10 ISA/EISA/ISA-PnP binding

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

only the low-order 11 bits of an I/O address range is indicated and aliases are assumed for all high-order
bits within the ISA 64KB I/O address space.

The numerical value is:

i is 1

nn..nn is the value whose hex representation is NNNN

mNNNNNNNN: corresponds to a Memory Space address. The numerical value is:

i is 0

nn..nnn is the value whose hex representation is NNNNNNNN

Conversion of hexadecimal numbers from text representation to numericshall be case-insensitive, and leading
zerosshall be permitted but not required.

Conversion from numeric representation to text representationshall use the lower case forms of the hexadecimal
digits in the range a..f, suppressing leading zeroes.

2.2.4. Unit Address Representation
As required by this specification’s definition of the"reg" property, the first entry orphys-addrshall be an
unit address for an ISA/EISA Node. The unit address form is shown below for an ISA, ISA-PnP or EISA
Adapter and is represented by Section2.2.2. on page9, Physical Format: Text Representation where, in sum-
mary form, is stated below:

I/O Unit Address - [i]tNNNN , [i]vNNNN or [i]NNNN

where i is optional.

or

Memory Unit Address - mNNNNNNNN

Note: It is an Open Firmware platform responsibility to maintain the ISA Unit Address
persistent from boot-to-boot. If the assigned ISAUnit Address is changed for an Adapter
(E.g.; due to a platform re-configuration and possible addition of a new ISA Adapter),
then the OS may have to be reinstalled.

2.2.5. Open Firmware Implication
Open Firmware assumes a single address space model. ISA/EISA I/O space is a distinct address space from
memory space, and so requires special consideration. On some processors, I/O space is physically mapped as a
subset of memory space and so can be conveniently accessed using standard register access primitives(rb@,
rw! , etc .); all that need be done is that map-in recognize an I/O space physical address and offset it by the
base of the I/O space area. On other processors, special instructions must be executed to access I/O space. On
these processors, it is recommended that Open Firmware reserve a block of virtual addresses for I/O space
access. Whenmap-in is given an I/O physical address, it would return a virtual address in this reserved range.
The register access words would examine each address they are given, and if the address is in the reserved
range they would execute the special instructions required to access I/O space.

2.3. Bus-specific Configuration Variables
An Open Firmware-compliant User Interface on a platform with a single built-in EISA bus may implement the
following EISA-specific Configuration Variable (Refer to [1], Appendix A to define the ’type code field’ N for
eisa-probe-list).

eisa-probe-list (-- list-str list-len) N

ISA/EISA/ISA-PnP binding 11

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

2.3.1. Format of a Probe List
Each EISA expansion slot is assigned an unique address, the most significant nibble (bits 12 to 15) of 16-bit I/O
address. 0 is assigned to the embedded or plug-in ISA devices on the EISA bus. 1 is assigned to EISA slot one,
and so on.

The probe list is thus a comma-separated list of EISA slots to probe, e.g. 1,2,3,4,5,6 on a 6-slot EISA bus.

There are no corresponding probe lists for ISA and PnP ISA because of the following:

The configuration data of ISA adapter cards is stored in NVRAM
(See “Format of Data Resource Information” on page19.). By the nature of ISA cards, all the resources
that are requested must be met.

PnP ISA cards cannot be addressed with a physical address by slot.

3. Bus Nodes
This section describes the Open Firmware properties and methods for the ISA and EISA buses.

Note: A bridge is a parent of one bus and is a child of another. Consequently, a node rep-
resenting a bridge is both a Bus Node and a Child node, with both sets of properties and
methods.

3.1. Properties
This section defines ISA and EISA bus Open Firmware Properties.

3.1.1. Open Firmware Properties for Bus Nodes
The following standard properties, as defined in Open Firmware, have special meanings or interpretations for the
ISA/EISA bus.

“name” S

Standard prop-name to specify the name of the package.

prop-encoded-array: a string encoded as withencode-string .

The meaning of this property is as defined in Open Firmware. The name of the package defining the legacy
AT style I/O bus is “isa.”

“device_type” S

Standard prop-name to specify the implemented interface.

prop-encoded-array: a string encoded as withencode-string .

The meaning of this property is as defined in Open Firmware. A Standard Package conforming to this
specification and corresponding to a device that implements an ISA busshall implement this property with
the string value “isa”. A device that implements an EISA extensionshall implement this property with the
string value “eisa”.

“ranges” S

Standard prop-name, defines the mapping of parent address to child address spaces.

This propertyshall be presentfor all ISA/EISA bus bridges. Thereshall be an entry in the“ranges”
property for each of the Memory and/or I/O spaces if that address space is mapped through the bridge. The
format for physical addresses entries is as specified in Section2.2. on page8.

The child address space requirements are defined in this binding document and the parent address space
requirements are defined by the appropriate bus binding.

12 ISA/EISA/ISA-PnP binding

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

3.1.2. Bus-specific Properties for Bus Nodes
The following bus-specific properties have special meanings or interpretations for the ISA and/or EISA bus.

“eisa-slots” S

prop-name to specify the bit map of EISA slots.

“clock-frequency” S

prop-name to specify the bus clock frequency.

prop-encoded-array: Integer clock frequency in hertz, encoded as withencode-int .

"slot-names" S

prop-name: Describes external labeling of add-in platform bus slots.

prop-encoded-array: An integer, encoded as withencode-int , followed by a list of strings, each encoded
as withencode-string .

The integer portion of the property value is a bitmask of available bus slots; for each add-in slot on the ISA
bus, the bit corresponding to that slot’s ID number is set from least-significant to most-significant ID
number. The number of following strings is the same as the number of slots; the first string gives a label
for the slot with the smallest ID number, and so on. The string contents would be platform dependent. The
absence of this property indicates no ISA slots.

Note: For an ISA bus, a method to get this information does not exist. Typically, a plat-
form could provide a means to allow a user through a configuration utility to store a slot
name in NVRAM (or other non-volatile storage). Open Firmware would then construct
this property from the slot name information stored in NVRAM.

Note: The "slot-names-index" is used to provide the index into the available ISA
slots.

“subtractive-decode” S

prop-name: If the bridge supports substractive decode, the propertyshall be present. If the property is
present, the implication is that the memory address and I/O address space entries in the"ranges"
property are subtractively decoded. The ISA/EISA Bridge will respond to an access not claimed by the
parent of the ISA Node within the definition of the"ranges" property.

3.2. Methods
This section defines methods for the ISA and/or EISA Bus and Child Nodes.

3.2.1. Standard Open Firmware-defined Methods
A Standard Package implementing the “isa” or “eisa” device typeshall implement the following standard
methods as defined in Open Firmware, with the physical address representations as specified in Section2.2. on
page8 of this document, and with additional ISA-/EISA-specific semantics:

open (-- okay?) M

Prepare this device for subsequent use.

close (--) M

Close this previously-open device.

map-in (phys.lo phys.hi size -- virt) M

Map the specified subregion.

map-out (virt size --) M

Destroy mapping from previousmap-in .

dma-alloc (size -- virt) M

ISA/EISA/ISA-PnP binding 13

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Allocate memory suitable for DMA use, by ISA and EISA. Since many I/O devices are restricted to 24-bit
addressing, the memory that is allocated must be in an area that can be reached by 24-bit addressing.

dma-free (virt size --) M

Free memory allocated with dma-alloc.

dma-map-in (virt size cacheable? -- devaddr) M

Convert virtual address to device bus DMA address.

dma-map-out (virt devaddr size --) M

Free DMA mapping set up withdma-map-in .

dma-sync (virt devaddr size --) M

Synchronize (flush) DMA memory caches.

probe-self (arg-str arg-len reg-str reg-len fcode-str fcode-len

--) M

If FCode exists, make a child node for adapter. Used to probe both ISA and EISA devices.

decode-unit (addr len -- phys.lo phys.hi) M

Convert text representation of address to numerical representation.

encode-unit (phys.lo phys.hi -- addr len) M

Convert numerical representation of address to text representation.

3.2.2. Bus-specific Open Firmware-defined Methods
A standard package implementing the “isa” or “eisa” device typeshall implement the following bus-specific
method as defined in Open Firmware, with the physical address representations as specified in Section2.2. on
page8 of this document, and with additional ISA-/EISA-specific semantics:

probe-pnp (--) M

Used to probe all PnP ISA cards.

4. Child Nodes
Logical devices and/or independent functions of a physical adapter cardshall each be a child node of the “isa”
or "eisa" bus node.

There are potentially four sources of input to Open Firmware in creating the child nodes:

1) For platform specific ISA and/or EISA devices (built-in devices), Open Firmware provides information
directly in creating nodes in device tree.

2) For a legacy ISA and EISA adapter cards, the resource allocation information is provided by the user via
some configuration utilities. The information is stored in NVRAM (or some other non-volatile storage). The
format of this data is based on the PnP ISA resource data structures defined for PnP ISA adapter cards
(presented in a later section of this document, Section6. on page18).

3) For a PnP ISA adapter card, the resource information is obtained directly from the adapter card.

4) For an ISA/EISA adapter card with FCode supported, the resource information is obtained directlyfrom the
adapter card.

4.1. Properties
This section defines core-specified and bus-specific child node properties.

14 ISA/EISA/ISA-PnP binding

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

4.1.1. Open Firmware Properties for Child Nodes
The following properties, as defined in Open Firmware, have special meanings or interpretations for the
ISA/EISA bus.

“name” S

Standard prop-name to specify the name of the child node

prop-encoded-array: a string encoded as withencode-string . The name can be a generic name or a
string in the form of pnpvvv,pppp (Refer toRecommended Practice - Generic Names[9]) where the string
form vvv is a Vendor ID and the stringpppp is a Product Number (See “Header” on page19. for the string
form).

The strings are defined to be in the following format:

pnp - literal string "pnp"
vvv - upper case ASCII characters with trailing blanks eliminated
pppp - lower case hexadecimal characters with leading zeroes eliminated

"compatible" S

Standard prop-name: Defines alternate" name" property values.

prop-encoded-array: The concatenation, withencode+ , of an arbitrary number of text strings, each
encoded withencode-string . The first entry should be an explicit, unique name that identifies the
device precisely enough to be able to infer a detailed programming model(Refer toRecommended Practice
- Generic Names[9]).

ISA, EISA or ISA PnP Card without Multiple Logical Devices:

The "compatible" property should consist of the following entry with a string value in the form of
pnpvvv,ppppwhere vvv,pppp is a vendor ID.

ISA PnP Card with Multiple Logical Devices:

Each logical function is represented by it’s own node in the device tree for the ISA Bus. For PnP-ISA
cards, the"compatible" property should consist of the following string entries, in the order as shown:

1a) If the device has multiple logical devices:
The property value should contain a string in the form of pnpvvv,pppp,fff wherevvv,pppp is the PnP vendor
ID for the adapter(See “Header” on page19.) andfff is the number of the logical device (See “Logical
Device ID Record” on page22.) with 0 denoting the first logical device, 1 denoting the second logical
device, and so on.

1b) If the device has only a single logical device:

The property value should contain a string in the form of pnpvvv,pppp wherevvv,pppp is the PnP vendor ID
for the adapter.

2) If the device supplies a logical device ID:

The property value should contain a string in the form of pnpvvv,pppp wherevvv,pppp is the PnP logical
device ID for the adapter.

3) If the device supplies one of more PnPcompatible ID records, then for each record in order:

The property value should contain a string in the form of pnpvvv,pppp wherevvv,pppp is the PnP
compatible ID (See “Compatible Device ID Record” on page23.) for each adapter record.

“reg” S

Standard prop-name, defines device's addressable regions.

prop-encoded-array: array with an arbitrary number of (phys-addrsize) pairs.

phys-addr is (phys.lo phys.hi), encoded as withencode-phys .

size is an integer, encoded as withencode-int .

ISA/EISA/ISA-PnP binding 15

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

The property value consists of a sequence of (phys-addrsize) pairs. Each (phys-addrsize) pair shall
specify the address of an addressable region of Memory Space or I/O Space associated with the function.
The first entry or component of the“reg” property is aunit address(See “Unit Address Representation”
on page10.).

Order of the“reg” property entries are determined by the device binding.

Note: As a general guideline for new device bindings, the preferred order of Memory and
I/O addresses are in an ascending order.

“interrupts” S

Standardprop-name, the presence of which indicates that the function represented by this node is connected
to an ISA/EISA bus interrupt line.

prop-encoded-array: list of an arbitrary number of integer pairs (irq# type) where:

irq# is an integer, encoded as withencode-int . The irq# integer represents the interrupt line to
which this function's interrupt is connected. This value is in the range 0..15 (decimal).

type is an integer, encoded as withencode-int , indicating an interrupt type. The interrupt types are
represented by the following integer values:

0 = active low level sensitive type enabled
1 = active high level sensitive type enabled
2 = high to low edge sensitive type enabled
3 = low to high edge sensitive type enabled

Refer to “IRQ Format Record” on page23 for where the" interrupts " property obtains the interrupt
attributes or characteristics. Also refer toRecommended Practice - Interrupt Mapping [10] for Open
Firmware interrupt structure.

Note: ISA interrupt contr oller legacy uses Interrupt 2 or 9 to cascade two 8259’s for 16
interrupt lines implementation.

“status” S

Standard property name, indicates the operational status of the device.

prop-encoded-array: Text string, encoded asencode-string.

4.1.2. Bus-specific Properties for Child Nodes
Standard Packages corresponding to devices that are children of an ISA or EISA busshall implement the
following properties, if applicable.

“dma” S

Standard prop-name, indicates that the function represented by this node is connected to an ISA/EISA bus
DMA resource.

prop-encoded-array: list of an arbitrary number of integers (dma# modewidth countwidth busmaster)
indicating the dma channel number, dma mode, dma transfer width and dma count width where:

dma# is an integer, encoded as withencode-int , where the value represents the DMA resource to
which this function is connected. This value is in the range of 0-3 and 5-7.

Note: DMA Channel 4 is used for cascading of 8259’s and is not available.

mode is an integer, encoded as withencode-int , where the value indicates the mode of the
corresponding dma channel:

0 device runs in compatibility mode.
1 device runs in DMA “A” mode.
2 device runs in DMA “B” mode.
3 device runs in DMA “F” mode.
4 device runs in DMA “C” mode.

width is an integer, encoded as withencode-int , where the value represents the dma transfer size of

16 ISA/EISA/ISA-PnP binding

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

the corresponding dma channel. The value of the integer will be 8, 16 or 32.

countwidth is an integer, encoded as withencode-int , where the value represents the count width of
the corresponding dma channel. The value of the integer will be 8, 16 or 32.

busmasteris an integer, encoded as withencode-int , where a value of 1 indicates a bus mastering
capability and a 0 indicates no bus mastering capability.

"slot-names" S

prop-name: Describes external labeling of a connector(s).

prop-encoded-array: An integer, encoded as withencode-int , followed by a list of strings, each encoded
as withencode-string .

The integer portion of the property value is a bitmask of available connectors; for each connector
associated with the function, the bit corresponding to that connector’s ID number is set from least-
significant to most-significant ID number. The number of following strings is the same as the number of
connectors; the first string gives a label for the connector with the smallest ID number, and so on. The
string contents would be platform dependent. The absence of this property indicates no connectors.

Note: Each device that has a connector would identify the order and contents of the list of
strings.

"slot-names-index" S

prop-name: Describes each add-in ISA slot with a unique number.

prop-encoded-array: An integer, encoded as withencode-int .

The value of this integer is a unique number with a range of 0 ton-1 for each ISA slot wheren is the
number of ISA add-in or plug-in slots. This number is used to index into the"slot-names" property to
identify the value of the string associated with the slot name. The absence of this property indicates no
ISA slots.

“eisa” S

prop-name: if exists, indicates an EISA device.

“pnp-csn” S

prop-name, is a property of device whose bus-interface is“ pnp ” .

prop-encoded-array: Integer encoded withencode-int . This is the Card Selection Number (CSN) that
the Open Firmware assigned to the device represented by this node in the process of PnP device isolation.

“description” S

prop-name, is a property of which the value is the identifier string from the PnP data resource record.

prop-encoded-array: a string, as encoded withencode-string , of the identifier string from bytes 3
throughn from the “ANSI Identifier String Record” on page22.

“pnp-data” S

prop-name, is a property of device whose bus-interface is“ pnp ” .

prop-encoded-array: an array of bytes containing PnP Packages encoded as withencode-bytes . Format
of the data resource structure is defined to be the PnP Data Resource Format(Section6. on page18). The
adapter data format would be defined in an adapter binding.

“pnp-id” S

prop-name, is a property of device whose bus-interface is“ pnp ” .

prop-encoded-array: a string, as encoded withencode-string , of the header string from the PnP data
resource record. Header format of the PnP Data Resource Structure (See “Header” on page19.) is defined
to be V1V2V3P1P2P3P4SSSSSSSS where:

V1V2V3 Vendor ID; string of upper case ASCII characters

P1P2P3P4 Product Number; string of lower case hexadecimal characters

ISA/EISA/ISA-PnP binding 17

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

SSSSSSSS Serial Number; string of lower case hexadecimal characters

Conversion from numeric representation for V1V2V3 text representationshall use the upper case forms of the
ASCII characters in the range A..F, eliminating trailing blanks.

Conversion from numeric representation for P1P2P3P4 and SSSSSSSS text representationshall use the lower
case forms of the hexadecimal digits in the range a..f, suppressing leading zeroes.

4.2. Bus-specific User Interface Commands
An Open Firmware-compliant User Interface on a platform with an ISA bus should implement the following
ISA-specific user interface commands.

probe-isa (--)

The probe-isa word should probe the legacy ISA adapter cards first. The reason is that legacy ISA devices are
the most inflexible with regards to resource assignments, generally not programmable and cannot be disabled;
thus, the resource assignment must be satisfied first. PnP ISA adapter cards and EISA adapter cards can be
probed in any order, depending on the implementation.

In addition, if there is a PCI bus in the platform to which the ISA bus is subordinate,probe-pci shall call
probe-isa automatically and the ISA busshall be probed before the PCI bus.

5. Encapsulated Drivers
This section describes a mechanism which allows the encapsulation of run-time drivers within the standard Open
Firmware expansion ROM ISA and EISA adapters.

The FCode contained with a card's expansion ROM provides for Open Firmware drivers for the device. To
enhance the “plug-and-play” of cards in common system platforms, it is desirable to be able to include run-time
drivers within this expansion ROM, thus eliminating the extra step of installing drivers onto the OS boot device.

The information about run-time drivers is encoded as additional standard properties within the device tree. These
properties are created by the FCode probe code of the plug-in card, and are used by the OS to locate and load
the appropriate driver. Two new properties are defined; they differ as to how the location of the run-time driver
is defined.

“driver,...” format S

This property, encoded as withencode-bytes , contains the run-time driver.

This format is used when the run-time driver is contained within the FCode image, itself. The value of the
property is the encapsulated driver; theprop-addr, prop-len reported by the various“ get-property ”
FCodes and/or getprop Client interface calls represent the location and size of the driver within the device
tree's data space. I.e.,decode-bytes could be used to copy the driver into the desired run-time location.

“driver-reg,...” format S

This property, encoded as with the“ reg ” standard property, contains a relative pointer to the run-time
driver.

This format is used when the driver is not directly contained within the FCode image, but rather, is located
in some other portion of the Expansion ROM. The value is encoded in a“ reg ” format, where the address
is relative to the expansion ROM's base address. This format conserves device tree (and, FCode) space, but
requires the OS to perform the actions of mapping in the Expansion ROM, using the information supplied
by this property and the address of the Expansion ROM, and copying the driver, itself.

The “ fcode-rom-offset ” property facilitates the generation of this property within the context of the
FCode's image. The driver can be located relative to the ROM image that contains the FCode (but, does not
have to be within the FCode, itself) without regard to the location of that ROM image relative to others
within the same expansion ROM. Therefore, “self-relocating” images containing encapsulated drivers can be
created that can be concatenated with other images without altering any data within an image (except, of
course, for the indicator to properly indicate the last image).

18 ISA/EISA/ISA-PnP binding

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

5.1. Naming Conventions
The complete property name for these encapsulated drivers is chosen to allow multiple drivers to coexist within
the expansion ROM. An OS will locate its driver by an exact match of its property name among any such
“driver,” (“driver-reg,”) properties contained within the device tree for this device. The formats of the complete
names are:

“driver,OS-vendor,OS-type,Instruction-set” “driver-reg,OS-vendor,OS-type,Instruction-set”

The OS-vendor component is as defined for device-names; i.e., organizational unique identifier (e.g., stock
symbol). The OS-type & Instruction-set components are as defined by the OS-vendor. An example would be:

“driver-reg,AAPL,MacOS,PowerPC”

6. Data Resource Information
For legacy ISA and EISA adapter cards, the resource allocation informationshall be provided by the user via
firmware and/or configuration utilities that can be platform specific. This information could be stored in the
platform’s NVRAM. The Open Firmware Working Group recommends that the format of this data be based on
the PnP ISA resource data structures defined for PnP ISA adapter cards. For a PnP ISA adapter card, the
resource information can be obtained directly from the adapter card.

Here is an example data flow diagram showing how the information could be initialized and maintained:

FIGURE 1 Example of data flow diagram for ’legacy’ ISA Card information
The user must first run the configuration utility to describe the hardware configuration of the platform, in
particular, the ISA and EISA plug-in cards. The configuration utility is responsible for warning the user of
unsolvable resource conflict, based on the information that the user entered. For example, the user cannot have
two primary IDE controllers. Of course, the inaccuracy of the information for ISA devices really cannot be
detected by software.

The configuration utility updates the NVRAM with the provided information via the Open Firmware.

After reset, the Open Firmware recreates the comprehensive device tree, making use of the NVRAM data. It is
also responsible for resolving resource allocation conflicts among programmable devices (PCI, EISA and PnP
ISA). When a programmable device cannot be enabled due to resource conflicts, the“ status ” property value
generated for that device should be failed.

User

 Config Utility/
 Firmware

 Open Firmware
NVRAM

PnP ISA Cards

data resource

data resource

 data
resource

data resource

Config Utility

OS Client
Program

ISA/EISA/ISA-PnP binding 19

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Note: Refer to device bindings for the resource data.

6.1. Format of Data Resource Information
The location in NVRAM or other non-volatile storage where the data information is stored and the methods to
read and write to it are to be determined by the platform bindings.

Open Firmware retrieves the resource information from NVRAM for ISA and EISA devices. In addition, the
Open Firmware probes the PnP ISA devices for their resource information.

Regardless of the source of information, they all have the same format, as defined below. The information fully
describes all resource requirements of a PnP ISA, legacy ISA and EISA cards as well as resource
programmability and interdependencies. The EISA cards, in addition, contains additional information as to how
to program the cards.

Each device has a header followed by a number of resource records and ended with the end tag record. The
general format of data resource information for a device is:

0. Header

1. Plug and Play version number

2. ID String

3. Logical Device ID

a. Compatible Device ID, if any, for this logical device

b. Resource data to match what the logical device uses (IRQ, memory, I/O, DMA), of
which the order for different types is unimportant, but is important for same type.

c. Dependent functions, if any

i. Start dependent function
ii. Resource data
iii. Repeat i and ii for each set of dependencies
iv. End dependent function

4. Repeat 3 for each logical device

5. End tag

6.2. Header
The header is also known as the Serial Identifier in the PnP ISA Spec [7]. It is also known as the Device
Product Identifier in the PnP BIOS Spec [6]. The first 4 bytes of the header is known as the Compressed ID in
the EISA Spec[4]. The header is defined as below:

byte definition

0 bit 7 0

bits[6:2] 1st char of vendor id

bits[1:0] 2nd char of vendor id bits[4:3]

1 bits[7:5] 2nd char of vendor id bits[2:0]

bits[4:0] 3rd char of vendor id

2 bits[7:4] 1st hex digit of product number

20 ISA/EISA/ISA-PnP binding

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

bits[3:0] 2nd hex digit of product number

3 bits[7:4] 3rd hex digit of product number

bits[3:0] hex digit of revision level

4 serial number bits[7:0]

5 serial number bits[15:8]

6 serial number bits[23:16]

7 serial number bits[31:24]

8 checksum

The values above are in a ’little-endian’ format.

The Vendor ID is an EISA manufacturer identifier in 5-bit compressed ASCII, where “00001”=”A”, ...,
“11010”=”Z”. This field is assigned to each manufacturer by the EISA administrative agent. It is the vendor's
responsibility to assign a unique product number and revision level for their products. The 32-bit serial number
differentiates between multiple PnP ISA cards with the same Vendor ID when they are plugged into one system
(used as part of the first component of the"reg" property of PnP Adapters). If this feature is not supported
for a PnP Card, then this field should be set to 0xFFFFFFFF.

Note: The last nibble of byte 3 is defined as a revision level. Current industry practice
uses the nibble as part of the product number.

The checksum is computed as follow:

b7 b6 b5 b4 b3 b2 b1 b0 = 0x6A

 y b7 b6 b5 b4 b3 b2 b1

 z y b7 b6 b5 b4 b3 b2

 ...

where y = x0 xor x1 xor byte 0 bit 0

 z = x1 xor x2 xor byte 0 bit 1

and the process repeats for each bit of the first 8 bytes of the header. After 64 iterations, x7' x6' x5' x4' x3' x2'
x1' x0' is the checksum.

6.3. Resource Records
Following the header is a collection of resource records for the device. The resource records have been
extended from the PnP data format in order to support the EISA Bus(“DMA Format Record” on page23).
There are two basic kinds of records, small and large.

Small records have the following format:

byte definition

0 bit 7 0 = small

bits[6:3] small record type

bits[2:0] number of bytes following byte 0

1-n actual information

ISA/EISA/ISA-PnP binding 21

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Large records have the following format:

byte definition

0 bit 7 1 = large

bits[6:0] large record type

1 number of bytes following byte 2, bits[7:0]

2 number of bytes following byte 2, bits[15:8]

3-n actual information

Small record types are:

1 Plug and Play version number

2 logical device id

3 compatible device id

4 IRQ format

5 DMA format

6 start dependent function

7 end dependent function

8 I/O port descriptor

9 fixed location 10-bit I/O port descriptor

0xa-0xd reserved

0xe vendor defined

0xf end tag

Large record types are:

1 24-bit memory range descriptor

2 ANSI id string

3 Unicode id string

4 vendor defined

5 32-bit memory range descriptor

6 32-bit fixed memory range descriptor

7-0x7f reserved

6.3.1. Plug and Play Version Number Record
The Plug and Play version number identifies the version of the PnP specification with which the card is
compatible. For legacy and EISA cards, this record is not required.

byte definition

22 ISA/EISA/ISA-PnP binding

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

0 0x0a, length = 1

1 PnP version number in packed BCD

bits[7:4] major version

bits[3:0] minor version

2 vendor specific version number

6.3.2. ANSI Identifier String Record
Each adapter card is required to have an ANSI identifier string. The" description " property is derived from
this string.

byte definition

0 0x82

1 identifier string length, lower 8 bits

2 identifier string length, upper 8 bits

3-n identifier string, not zero terminated

6.3.3. Unicode Identifier String Record
byte definition

0 0x83

1 length of string + 2, lower 8 bits

2 length of string + 2, upper 8 bits

3 country identifier, lower 8 bits

4 country identifier, upper 8 bits

5-n identifier string

6.3.4. Logical Device ID Record
The logical device id provides a mechanism for uniquely identifying multiple logical devices embedded in a
single card. This identifier may be used to select the appropriate device driver.

The first entry of the "compatible" property comes from this logical device id record.

byte definition

0 0x15 or 0x16, length = 5 or 6

1 bits[6:2] 1st char of device id

bits[1:0] 2nd char of device id bits[4:3]

2 bits[7:5] 2nd char of device id bits[2:0]

bits[4:0] 3rd char of device id

3 bits[7:4] 1st hex digit of function number

bits[3:0] 2nd hex digit of function number

4 bits[7:4] 3rd hex digit of function number

ISA/EISA/ISA-PnP binding 23

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

bits[3:0] hex digit of revision level

5 bits[7:1] if set, indicate commands supported per logical device for registers in

the range of 31 to 37 respectively

bit[0] if set, indicates this logical device is capable of participating in the boot

process. Otherwise, the Open Firmware does not activate this device.

Thus this bit should be 0 for redundant adapter cards.

6 bits[7:0] if set, indicate commands supported per logical device for registers in the

range of 38 to 3f respectively

Note: The last nibble of byte 4 is defined as a revision level. Current industry practice
uses the nibble as part of the function number.

6.3.5. Compatible Device ID Record
This record provides the ID of other devices with which this device is compatible. The operating system uses
this information to load compatible device drivers if necessary. The Open Firmware uses this record to generate
the "compatible" property.

The rest of the"compatible" property comes from this Compatible Device ID Record, in the order that they
appear.

byte definition

0 0x1c, length = 4

1-4 compatible device id in the same format as the logical device id

bytes 1-4

The “compatible” property assumes the value of the ASCII representation of the compatible device id.

6.3.6. IRQ Format Record
This record indicates that the device uses an IRQ and supplies a mask with bits set indicating the IRQ levels
implemented in this device. This record is repeated for each separate IRQ required.

byte definition

0 0x22 or 0x23, length = 2 or 3

1 bits[7:0] representing IRQ[7:0]

2 bits[7:0] representing IRQ[15:8]

3 bits[7:4] reserved, must be 0

bit[3] active low level sensitive (EISA)

bit[2] active high level sensitive

bit[1] high to low edge sensitive

bit[0] low to high edge sensitive (ISA)

6.3.7. DMA Format Record
This record indicates that the device uses a DMA channel and supplies a mask with bits set indicating the
channels actually implemented in this device. This record is repeated for each separate DMA channel required.

24 ISA/EISA/ISA-PnP binding

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

byte definition

0 0x2a or 0x2d, length = 2 or 5

1 bits[7:0] representing DMA channel[7:0]

2 bit[7] reserved, must be 0

bits[6:5] DMA channel speed supported

00 compatibility mode

01 type A DMA

10 type B DMA

11 type F DMA

bit[4] if set, DMA may execute in count by word mode

bit[3] if set, DMA may execute in count by byte mode

bit[2] if set, logical device is a bus mastering device

bits[1:0] DMA transfer type

00 8-bit only

01 8- and 16-bit

10 16-bit only

11 reserved

3 extended dma channel speed supported

bit[7] 1 = ok to use extended bytes

bits[6:0] 0 compatibility mode

1 type A DMA

2 type B DMA

3 type F DMA

4 type C DMA

4 extended DMA count type: 8, 16, 32

5 extended DMA transfer type: 8, 16, 32

Bytes 3-5 in the record are added to support EISA function. PnP ISA cards will have only 0x2a in byte 0. The
additional bytes have been added to support extended EISA function which is capable of 32-bit DMA and type
C DMA.

6.3.8. I/O Port Descriptor Record
byte definition

0 0x47, length = 7

1 bits[7:1] reserved, must be 0

bit[0] if set, the logical device decodes the full 16-bit ISA address

2 minimum I/O base address, bits[7:0]

ISA/EISA/ISA-PnP binding 25

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

3 minimum I/O base address, bits[15:8]

4 maximum I/O base address, bits[7:0]

5 maximum I/O base address, bits[15:8]

6 I/O base address alignment

7 number of contiguous I/O ports requested

6.3.9. Fixed Location 10-bit I/O Port Descriptor Record
byte definition

0 0x4b

1 I/O base address, bits[7:0]

2 bits[1:0] I/O base address, bits[9:8]

3 number of contiguous I/O ports requested

6.3.10. 24-bit Memory Range Descriptor Record
Mixing of 24-bit and 32-bit memory descriptors is not allowed.

byte definition

0 0x81

1 9, least significant byte of record length

2 0, most significant byte of record length

3 bit[7] reserved, must be 0

bit[6] memory is an expansion ROM

bit[5] memory is shadowable

bit[4:3] memory control

00 8-bit memory only

01 16-bit memory only

10 8- and 16 supported

11 reserved

bit[2] decode support type

0 decode supports range length

1 decode supports high address

bit[1] cache support type

0 non-cacheable

1 read cacheable, write-through

bit[0] write status

0 ROM

1 writeable

26 ISA/EISA/ISA-PnP binding

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

4 minimum base memory address, bits[15:8]

memory base address [7:0] are assumed to be 0

5 minimum base memory address, bits[23:16]

6 maximum base memory address, bits[15:8]

7 maximum base memory address, bits[23:16]

8 base alignment, bits[15:8]

9 base alignment, bits[23:16]

10 length of memory range in 256 byte blocks, lower 8 bits

11 length of memory range in 256 byte blocks, upper 8 bits

6.3.11. 32-bit Memory Range Descriptor Record
byte definition

0 0x85

1 7, least significant byte of record length

2 0, most significant byte of record length

3 bit[7] reserved, must be 0

bit[6] memory is an expansion ROM

bit[5] memory is shadowable

bit[4:3] memory control

00 8-bit memory only

01 16-bit memory only

10 8- and 16-bit supported

11 reserved

bit[2] decode support type

0 decode supports range length

1 decode supports high address

bit[1] cache support type

0 non-cacheable

1 read cacheable, write-through

bit[0] write status

0 ROM

1 writeable

4 minimum base memory address, bits[7:0]

5 minimum base memory address, bits[15:8]

6 minimum base memory address, bits[23:16]

ISA/EISA/ISA-PnP binding 27

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

7 minimum base memory address, bits[31:24]

8 maximum base memory address, bits[7:0]

9 maximum base memory address, bits[15:8]

10 maximum base memory address, bits[23:16]

11 maximum base memory address, bits[31:24]

12 base alignment, bits[7:0]

13 base alignment, bits[15:8]

14 base alignment, bits[23:16]

15 base alignment, bits[31:24]

16 length of memory range, bits[7:0]

17 length of memory range, bits[15:8]

18 length of memory range, bits[23:16]

19 length of memory range, bits[31:24]

6.3.12. 32-bit Fixed Location Memory Range Descriptor Record
byte definition

0 0x86

1 9, least significant byte of record length

2 0, most significant byte of record length

3 bit[7] reserved, must be 0

bit[6] memory is an expansion ROM

bit[5] memory is shadowable

bit[4:3] memory control

00 8-bit memory only

01 16-bit memory only

10 8- and 16-bit supported

11 reserved

bit[2] decode support type

0 decode supports range length

1 decode supports high address

bit[1] cache support type

0 non-cacheable

1 read cacheable, write-through

bit[0] write status

0 ROM

28 ISA/EISA/ISA-PnP binding

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

1 writeable

4 base memory address, bits[7:0]

5 base memory address, bits[15:8]

6 base memory address, bits[23:16]

7 base memory address, bits[31:24]

8 length of memory range, bits[7:0]

9 length of memory range, bits[15:8]

10 length of memory range, bits[23:16]

11 length of memory range, bits[31:24]

6.3.13. Start Dependent Function Record
The resources required by a logical device may have interdependencies that need to be expressed to allow
software to make resource allocation decisions about the device. Dependent functions are used to express these
interdependencies. For example, serial I/O ports are linked with a particular IRQ.

byte definition

0 0x30 or 0x31, length = 0 or 1

1 priority byte

0 highest priority and preferred configuration

1 lower priority but acceptable configuration

2 sub-optimal configuration

3-ff reserved

6.3.14. End Dependent Function Record
Dependent Functions are not nestable. Therefore, only one End Dependent Function record is allowed per
logical device.

byte definition

0 0x38, length = 0

6.3.15. Small Vendor Defined Record
byte definition

0 0x71-0x77, length = 1-7

1-7 vendor defined

6.3.16. Large Vendor Defined Record
byte definition

0 0x84

1 length of data, lower 8 bits

2 length of data, upper 8 bits

ISA/EISA/ISA-PnP binding 29

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

3-n vendor defined data

6.3.17. End Tag Record
This record identifies the end of resource information for the adapter card.

byte definition

0 0x79, length = 1
checksum covering all resource data after the serial identifier. This
checksum is generated such that adding it to the sum of all data
bytes will produce a zero sum. If the field is 0, the resource data is
treated as if it checksummed correctly.

30 ISA/EISA/ISA-PnP binding

September 23, 1996 Revision 0.4 (Unapproved Draft)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

-- END OF DOCUMENT --

