OCO~NOUITR_AWNE

ARM Processor Binding

ARM Processor Binding to:

|[EEE 1275-1994
Standard for Boot
(Initialization, Configuration)

Firmware

Revision: 0.3 DRAFT
Date: November 5, 1997

PRELIMINARY

OCO~NOOUITARWNE

ARM Processor Binding

Purpose of this ARM Processor Binding

This document specifies the application of Open Firmware to an ARM Processor, including requirements and
practices to support unique firmware specific to an ARM Processor. The core requirements and practices
specified by Open Firmware must be augmented by processor-specific requirements to form a complete
specification for the firmware implementation for a ARM Processor. This document establishes such additional
requirements pertaining to the processor and the support required by Open Firmware.

Task Group Members

The ARM Processor Binding team members were the following:
Mitch Bradley, FirmWorks
Greg Hill (editor), FirmWorks

Trademarks

The following terms, denoted by a registration symbol (®) or trademark symbol(™) on the first occurrence in
this publication, are registered trademarks or trademarks of the companies as shown in the list below:

Trademark Company

Revision History

Revison Date Changes
0.1 July 1, 1997 Initial, unapproved release.
0.2 August 19, 1997 Added the virtual address region 0x0000.0000 - 0x0000.1000

to the virtual space consumed by Open Firmware at the hand-
off to aclient program.

0.3 November 5, 1997 Clarified Open Firmware’s unmapping and releasing of the
unused portion of the client program load space after pro-
gram preparation for execution has been completed.

i of 18 Preliminary November 5, 1997 Revision 0.3 DRAFT

OCoO~NOOTA~AWNE

ARM Processor Binding

Table of Contents

L OVEIVIB. .« ettt e e e e e e 1
2. References and TermS.ottt e 1
2 L RE O ENCES. . o ottt 1
2 2 T OIS . L e 1
3. DataFormats and Representationsot e 1
4. Memory Management.t e 2
4.10pen Firmware’s Use of Memory i e 2
4.1.1Virtual-Mode 2
4.1.2ClientInterface 2
4.1.2.1 0pen Firmware RuUles e 2
4.1.2.2ClientProgram RuUles 2
5. DEVICE TrE. . .ttt e 2
5.1 CPUS” NOUE. . . 3
5.1.1 Physical Address Formats and Representations. 3
5.1.1.1 Numerical Representation ittt 3
5.1.1.2 Text Representation 3
5.1.1.3 Unit Address Representation 3
5.1.2"/ cpus” node Properties. 3
5.2"/cpus/ cpu” NOOEe o 3
5.2.1"/ cpus/ cpu" Node Properties 4
5.2.1.1 TLB Propertiesot e 4
5.2.1.2 Internal (L1) Cache Properties 5
5.2.2"/ cpus/cpu” Node Methods i 5
5.3"/chosen” NOde. 6
5.4 Memory Management UNit. e e 6
5.4.1 Memory Management Unit Properties 6
5.4.2 Memory Management Unit Methods. 6
5.5 Ancillary (L2, L3) Cache Node Properties. 6
6. Client Interface Requirements e 7......
6.1 Client Program Loading e 7
6.1.1 Load AdAressS.ot 7
6.1.2 Client Program Header e 8
6.2 Initial Program State. 9.....
6.2.1 Initial Register Values e 9
6.2.21Initlal Stack 9
6.2.3 Client Interface Calling Convention, 9
6.2.4 Client Program Argumentsttt 10
B6.2.5 Traptable. e 10
6.2.6 Virtual address space and memory allocation. 11

November 5, 1997 Revision 0.3 DRAFT Preliminary i of 18

OCO~NOOUITARWNE

ARM Processor Binding

6.2.7Memory Cache(S)cvvvii i 11
B.2.8 INterrupt Sharingo e 11
6.3 Additional Client Interface Services. 12
6.4 Client Callbacks 12
6.4.1 Virtual Address Tranglation Assist Callbacks. 13
6.4.2Clamand Release Callbacks. i 14
6.4.3 Interrupt Callback 16

7. User Interface RequIrementst e e et e 17
7.1 Machine REgISIEr ACCESS . . .ottt e e e e e e e e 17
7.0 Integer RegISEIS . ..ot 17
7.1.2 Floating-PoiNt REGISENS oo e 18

7. 1.3 SCC REG IS OIS . o vttt et e 18
72ROM UpgradeMethod. 18
7.20net-flash (--) oo e 18
7.3 ConfigurationVariables e 18

iii of 18 Preliminary November 5, 1997 Revision 0.3 DRAFT

OCoO~NOOTA~AWNE

ARM Processor Binding

1. Overview

This document specifies the application of IEEE Sd 1275-1994 Sandard for Boot (Initialization, Configuration)
Firmware, Core Practices and Requirements to computer systems that use the Advance RISC Machine (ARM)
Instruction Set Architecture, including instruction-set-specific requirements and practices for debugging, client
program interface and data formats. An implementation of Open Firmware for ARM shall implement the core
requirements as defined in [1] and the ARM-specific extensions described in this binding.

2. Referencesand Terms

2.1. References

This standard shall be used in conjunction with the following publications. When the following standards are
superseded by an approved revision, the revision shall apply.

[1] I1EEE Sd 1275-1994 Sandard for Boot (Initialization, Configuration) Firmware, Core Practices and
Requirements.

[2] The ARM Architecture, 1/e, Dave Jagger, Prentice Hall, March, 1997, (ISBN 0-13-736299-4).

[3] aout file format as defined in the file i ncl ude/ sys/ exec_aout . h of the NetBSD distribution.
http://www.netbsd.org.

2.2. Terms

This standard uses technical terms as they are defined in the documents cited in “References” on page 1, plus
the following terms:

core specification: Synonym forlEEE Sd 1275-1994 Standard for Boot (Initialization, Configuration)
Firmware, Core Practices and Requirements (i.e. the standard that specifies the system-independent and bus-
independent requirements for Open Firmware).

Open Firmware: The firmware architecture defined by IEEE Std 1275-1994 and its applicable supplements or,
when used as an adjective, a software component compliant with such an architecture.

virtual address: The address that a program uses to access a memory location or memory-mapped device
register. Depending on the presence or absence of memory mapping hardware in the system, and whether or not
that mapping hardware is enabled, a virtual address may or may not be the same as the physical address that
appears on an external bus. Unless otherwise noted, all addresses mentioned in this document are virtual
addresses.

3. Data Formats and Representations

The cell sizeshall be 32 bits. Number ranges foyu, and other cell-sized items are consistent with 32-bit,
two's-complement number representation.

The required alignment for items accessed \aitiddr addresseshall be four-byte aligned (i.e. a multiple of 4).

Each operation involving gaddr addresshall be performed with a single 32-bit access to the addressed
location; similarly, eaclwaddr accesshall be performed with a single 16-bit access. This implies four-byte
alignment forgaddrs and two-byte alignment favaddrs.

November 5, 1997 Revision 0.3 DRAFT Preliminary lof 18

OCO~NOOUITARWNE

ARM Processor Binding

4. Memory Management

4.1. Open Firmware’s Use of Memory

Open Firmware shall use the memory resources within the virtual space beginning at 0xF700.000 whose size is
0x0100.0000.

4.1.1. Virtual-Mode

Open Firmware shall operate with the memory management unit enabled so that Open Firmware and its client
share a single virtual address space. This binding provides interfaces to allow Open Firmware and its client to
ensure that this single virtual address model can be maintained.

4.1.2. Client Interface

Client interface services are invoked essentially as “subroutine” calls to Open Firmware. Hence, the client
interface executes in the environment of its client, including any translations that the OS has established (i.e.
addresses passed in to the client interface are assumed to be valid virtual addresses within the scope of the OS).

Note: If a client program takes control of memory management and address translation and wishes to
continue using client interface services, the client program must establish a callback handler as
described in “Client Callbacks” on page 12.

In addition to using existing translations, the Client Interface might require the establishment of new translations
(e.g. due to map-i n cals during open time), or the removal of old trandations (e.g. during map- out calls
during cl ose time). Since this requires altering the client’s translation resources (e.g. page tables), Open
Firmware cannot know how to perform these updates.

4.1.2.1. Open Firmware Rules

The following rules let clients (i.e. target operating systems) know where Open Firmware lives in the address
space.

e Open Firmwareshall maintain the value of tHet r ansl at i ons" property off mu (see Section 5.4.1)

« Open Firmware'sl ai mmethodsshall not allocate more pages than are necessary to satisfy the request.

« When a client executeet - cal | back, Open Firmwarshall attempt to invoke ther ansl at e callback. If
thet r ansl at e callback is implemented, Open Firmwahall cease use of address translation hardware,
instead using the client callbacks for changes to address translation.

4.1.2.2. Client Program Rules

e Client programs that take control of the management of address translation hardware and expect to be able to
subsequently invoke Open Firmware client services must provide callbacks to assist Open Firmware in address
translation (see Section 6.4.1).

« Aclient progranshall not directly manipulate any address translation hardware before it either:
a) Ceases to invoke OF client services, or
b) Issues &et - cal | back to install thet r ansl| at e callback.

Note: The intended sequence is that a client program will first issue a set - cal | back and then take
control of address trandation hardware.

5. Device Tree

This section describes the processor-related nodes of the device tree of an ARM Open Firmware implementation.

20f 18 Preliminary November 5, 1997 Revision 0.3 DRAFT

OCoO~NOOTA~AWNE

ARM Processor Binding

5.1. "/ cpus" Node

There shall be a node named " cpus” which is a direct child of the root node.

The purpose of this node is to contain other " cpu” nodes and to define an address space by which individual
"cpu" nodes can be distinguished from one another. This anticipates the possibility of multi-processor ARM
systems in the future.

5.1.1. Physical Address Formats and Representations

5.1.1.1. Numerical Representation

The numerical representation of a child’s addigstl be a single binary integer in the range 0 ... N-1, where
N is the maximum number of CPUs supported by the system architecture.

5.1.1.2. Text Representation

The text representation of a child’s addreisall be the ASCII hexadecimal number corresponding to the
numerical representation of the address.

Conversion of the hexadecimal number from text representation to numeric represeshéditibe case
insensitive, and leading zerakall be permitted but not required.

Conversion from numeric representation to text representgtahuse the lower case forms of the hexadecimal
digits in the range...f, suppressing leading zeros.

5.1.1.3. Unit Address Representation

A processor’s “unit-address” (i.e. the first component of iteg" value) is the interprocessor interrupt
destination identifier used by the platform. For a uni-processor platform, the “unit-adslial$sfie zero.

51.2. "/ cpus" NodeProperties

The following propertieshall be created within thecpus"” node.

"nane"
Standardprop-name to define the name of the node.

prop-encoded-array: Text string, encoded as witncode- st ri ng.
The value of this propertghall be" cpus".

"#address-cel | s"

Standardorop-name to define the number of cells required to represent the physical addresses for the
"cpu" nodes (i.e. the children of tHepus" node).

prop-encoded-array: Integer constant 1, encoded as wéilcode- i nt .
The value of' #addr ess-cel | s" for the" cpus" nodeshall be 1.

"#size-cel | s"

Standardorop-name to define the number of cells necessary to represent the length of a physical address
range.

prop-encoded-array: Integer constant 0, encoded as wétlhcode-i nt .

The value of' #si ze-cel | s" for the" cpus" node is 0 because the processors that are represented by
the" cpu" nodes do not consume any physical address space.

5.2. "/ cpus/ cpu" Node

Each CPU in the systeshall have a node describing it as follows.

November 5, 1997 Revision 0.3 DRAFT Preliminary 3of 18

OCO~NOOUITARWNE

ARM Processor Binding

5.2.1. "/ cpus/ cpu" node properties
"name"
Standard prop-name to define the name of the node.

prop-encoded-array: Text string, encoded as with encode- st ri ng.
The value of this property shall be " cpu”.

"devi ce_type"
Standard prop-name to specify the implemented interface.
prop-encoded-array: Text string, encoded as with encode- st ri ng.
The value of this property shall be " cpu”.

"reg"
Standard prop-name to specify the node’s addressable resources.
prop-encoded-array: an integer encoded as wighcode-int.

The value of this propertghall be a one-cell integer representing the interrupt dispatch number that is used
to direct inter-processor interrupts to this CPU.

For a uniprocessor system, the vashell be 0.

"nodel "
Standardprop-name to define a cpu node’s model.

prop-encoded-array: Text string, encoded as wincode- st ri ng.

The value of this propertghall be a string consisting of the CPU type and revision (e€Sfr ongar m
SA-110-3").

"cl ock-frequency"
Standard property specifying the internal processor speed of this node.
prop-encoded-array: an integer encoded as wighcode-int.

The value of this propertghall be an integer specifying the CPU internal clock frequency in Hertz (e.qg.
235,500,000).

"bus-frequency”
Standard property specifying the speed of this processor’s bus.
prop-encoded-array: an integer encoded as wighcode-int.
The value of this propertghall be an integer specifying the speed in Hertz of this processor’s bus (e.g.
66,666,666).
5.2.1.1. TLB Properties

Since the ARM architecture defines the MMU as being part of the processor, the properties defined by Section
3.6.5 of [1] and the following MMU-related propertigsall be presented undércpu" nodes.

"tl b-size"

Standard property, encoded as wathcode- i nt, that represents the total number of TLB entries in
decimal (e.g. 32).

"tlb-sets"
Standard property, encoded as wathcode- i nt, that represents the number of TLB sets.

Note: The number of sets is related to, but not the same as, the number of “ways of associativity".
Specifically:

40f 18 Preliminary November 5, 1997 Revision 0.3 DRAFT

OCoO~NOOTA~AWNE

ARM Processor Binding

tlb-sets * number-of-ways = tlb-size
For a fully-associative TLB, tlb-sets = 1.
For a direct-mapped TLB, tlb-sets = tlb-size.

5.2.1.2. Internal (L1) Cache Properties

The ARM architecture defines a Harvard-style cache architecture. All of the ARM cache instructions act upon a
cache “block” (also referred to as a cache “line”). The internal (also referred to as “L1") caches of ARM
processors are represented in the Open Firmware device tree by the following properties contairfegputider
nodes.

"write-buffer-size"

Standard property, encoded as wathhcode- i nt, that represents the maximum number of bytes in the
write buffer (e.g. 16).

If there is no write buffer, the valwushall be 0.

"d- cache-si ze"

Standard property, encoded as wathcode- i nt, that represents the size of the internal data cache in
bytes (e.g. 16384).

"d- cache- bl ock-si ze"

Standard property, encoded as wathcode- i nt, that represents the size of a data cache block size, in
bytes (e.g. 32).

"d-cache-sets"
Standard property, encoded as wathicode- i nt, that represents the number of data cache sets.

Note: The number of sets is related to, but not the same as, the number of “ways of associativity".
Specifically:

d-cache-sets * number-of-ways * d-cache-block-size = d-cache-size
For a fully-associative data cache, d-cache-sets = 1.

For a direct-mapped data cache, d-cache-sets = d-cache-size / d-cache-block-size
"i-cache-size"

Standard property, encoded as with encode- i nt , that represents the size of the instruction cache in bytes
(e.g. 16384).

"i-cache-bl ock-si ze"

Standard property, encoded as with encode- i nt, that represents the size of an instruction cache block in
bytes (e.g. 32).

"i-cache-sets"
Standard property, encoded as with encode- i nt, that represents number of instruction cache sets.

Note: The number of sets is related to, but not the same as, the number of “ways of associativity".
Specifically:

i-cache-sets * number-of-ways * i-cache-block-size = i-cache-size
For a fully-associative instruction cache, i-cache-sets = 1.

For a direct-mapped data cache, i-cache-sets = i-cache-size / i-cache-block-size
TBD: Do we need to report which kinds of flush and clean instructions are supported?

5.2.2. "/ cpus/ cpu” Node Methods
open
Standard method that prepares this device for subsequent use.

November 5, 1997 Revision 0.3 DRAFT Preliminary 50f 18

OCO~NOOUITARWNE

ARM Processor Binding

cl ose
Standard method that restores a previously-opened device to its “not in use” state.

5.3. "/ chosen" Node

In addition to the standard properties defined for this node by [1], this binding defines the following property.
"cpu”

Standard property, encoded as wathcode- i nt, that represents the ihandle of an instance of tyu"
node corresponding to the CPU on which the firmware is executing.

5.4. Memory Management Unit

5.4.1. Memory Management Unit Properties

To aid a client in “taking over” the translation mechanism while still enabling interaction with Open Firmware
(via the client interface), the client needs to know the granularity of the virtual address space and what
translations have been established by Open Firmware. In addition to the standard properties listed in Section
3.6.5 of [1], the following standard propertig®ll exist within the package to which themu" property of the

/ chosen package refers.

"page- si ze"

Standard property, encoded as wathicode- i nt, that specifies the number of bytes in the smallest
mappable region of virtual address space.

The value of this propertghall be 4096 (decimal).

"transl ati ons"

This property, consisting of sets of translations, defines the currently active translations that have been
established by Open Firmware (e.g. usirgp). Each set has the following format:

(virt size phys node)

Each value is encoded as wi#hcode-i nt.

5.4.2. Memory Management Unit Methods

There are no additional methods required beyond those specified in Section 3.6.5 of [1].

5.5. Ancillary (L2, L3) Cache Node Properties

Some systems might include secondary (L2) or tertiary (L3), etc. cache(s). They can be implemented as either
Harvard-style or unified. Unlike the L1 properties, that are contained within the " cpu” nodes, the properties of
ancillary caches are contained within other device tree nodes.

The following properties define the characteristics of such ancillary caches. These properties shall be contained
as a child node of one of the CPU nodes; this is to allow path-name access to the node. All " cpu" nodes that
share the same ancillary cache (including the cpu node under which the ancillary cache node is contained) shall
contain an " | 2- cache" property whose value is the phandle of that ancillary cache node.

Note: The " | 2- cache" property shall be used in one level of the cache hierarchy to represent the
next level. The device node for a subsequent level shall appear as a child of one of the caches in the
hierarchy to allow path-name traversal.

"devi ce_type"
Open Firmware Standard property; the device type of ancillary cache nodes shall be " cache" .

6 of 18 Preliminary November 5, 1997 Revision 0.3 DRAFT

OCoO~NOOTA~AWNE

ARM Processor Binding

"cache-uni fied"

This property, if present, indicates that the cache at this node has a unified organization. Absence of this
property indicates that the caches at this node are implemented as separate instruction and data caches.

"i-cache-size"

Standard property, encoded as with encode- i nt, that represents the total size (in bytes) of the instruction
cache at this node.

"i-cache-sets"

Standard property, encoded as with encode- i nt , that represents number of associativity sets of the
instruction cache at this node. A value of 1 signifies that the instruction cache is fully associative.

"d-cache-si ze"

Standard property, encoded as with encode- i nt, that represents the total size (in bytes) of the data cache
at this node.

"d-cache-set s"

Standard property, encoded as with encode- i nt , that represents number of associativity sets of the
instruction cache at this node. A value of 1 signifies that the instruction cache is fully associative.

"| 2-cache"

Standard property, encoded as with encode- i nt, that represents the next level of cache in the memory
hierarchy.

Absence of this property indicates that no further levels of cache are present. If present, its value is the
phandle of the device node that represents the cache at the next level.

"i-cache-line-size"

Standard property, encoded as with encode-int, that represents the internal instruction cache’s line size, in
bytes, if different than its block size.

"d-cache-1line-size"

Standard property, encoded as with encode-int, that represents the internal data cache’s line size, in bytes, if
different than its block size.

Note: If thisis a unified cache, the corresponding i- and d- sizes must be equal.

6. Client Interface Requirements

An ARM Open Firmware implementation shall implement a client interface (as defined in Chapter 6 of [1])
according to the specifications contained within this section.

6.1. Client Program Loading

6.1.1. Load Address

The default load address is 0xFO000000, the value of | oad- base. Client programs are assumed to be designed
to be loaded at OxFO000000.

Prior to the first execution of | oad, the firmware shall alocate and map at least 6 MB of physical memory at
this address, unless the hardware configuration of the system makes this impossible. In that case, the firmware
shall map as much memory as practical.

Note: As described in Section 6.1.2., for most load formats, once a loaded program has been prepared
for execution, any memory in the load area that is not actually consumed by the loaded image is then
unmapped and released to the available list.

November 5, 1997 Revision 0.3 DRAFT Preliminary 7of 18

OCO~NOOUITARWNE

ARM Processor Binding

6.1.2. Client Program Header

An Open Firmware implementation shall recognize the sequence of eight quadiets described below as a valid
client program header (as used by the | oad User Interface command in the core specification) if the

a_m dnmag quadlet contains the specified values. The offsets given below are from the beginning of the loaded
image.

Offset Name Endianess |Contents
0 a_m dmag Big 0x008F010B
4 a_text Little The length in bytes of the header plus the text segmgnt in

both the file and the execution image.

8 a_data Little The length in bytes of the data segment in both the file
and the execution image

12 a_bss Little The length in bytes of the bss segment in the execuition
image. The bss segment is not stored in the file, bedause
its initial contents are always zero.

16 a_sym Little The length in bytes of the symbols “section” of the f{le.
(The symbol table in the execution image consists offtwo
“sections”, one for the symbols and a second for|the

stringsl)

20 a_entry Little The virtual address at which program execution ig to
begin.

24 a trsize Little The size of the text relocation table. Used only for object

files. Contains O for executable files.

28 a_drsize Little The size of the data relocation table. Used only for oRject
files. Contains O for executable files.

The program image immediately follows the header. After recognizing this header, | oad shall:

« Synchronize the instruction and data caches froad- base tol oad- base +a_t ext +a_dat a + 0x20,

« Move the symbol “section” and string “section” of the symbol table froad- base +a_t ext +a_data +
0x20 tol oad- base +a_t ext +a_data +a_bss + 0x20.

e Zeroa_bss bytes of memory beginning bbad- base +a_t ext +a_dat a + 0x20,

* Release and unmap the physical memory fraad- base +a_text +a_data +a_bss +a_sym+
string_si zel+ 0x20 (i.e. from the end of the prepared client program memory image) to the end of the load
area. (The goal of this step is to have'thgai | abl e" properties in thé menor y and/ mru nodes
accurately reflect the memory actually consumed by the client program prepared image.)

e Setthepc in thesaved-program-statetoa_entry.
e Set the remaining elements of tawed-program-state to their initial values.

Note: The above header is that used by NetBSD [3].

If the a_m dmag quadlet does not contain the specified value, the behavior of the Open Fithoaake
command with respect to client program recognition is as follows:

1. string_size isthe 32-bit, little-endian value bbad- base +a_t ext +a_dat a +a_symwhich
describes the length in bytes of the string “section” of the symbol table.

8of 18 Preliminary November 5, 1997 Revision 0.3 DRAFT

OCoO~NOOTA~AWNE

ARM Processor Binding

If the file is in Forth source format [i.e. the file begins with the characters "\ " (0x5C, 0x20)], tHealfilbe
interpreted as withl“oad- base fil e-size @eval uate”, or

« Ifthe file is FCode [i.e. the file begins with the startl FCode token (0xF1)], trehdilebe evaluated as with
“| oad- base 1 byte-I|oad”, or

e If the file contains another format that an implementation chooses to support, the file should be processed in an
appropriate implementation-dependent manner, or

« If the file format is still not recognized, the imag®ll be treated as a raw binary image whose entry point is
| oad- base.

6.2. Initial Program State

This section defines the “initial program state”, the execution environment that exists when the first machine
instruction of aclient program begins execution. Many aspects of the “initial program state” are established by
i nit-program which sets theaved-program-state so that subsequent executiongaf will begin execution

of the client program with the specified environment.

6.2.1. Initial Register Values
Upon entry to the client program, the following registgrall contain the following values:

Register(s) Value
pc Entry point of loaded program.
psr Condition code values unspecified

| = 0 = interrupts enabled

F = enabled (if and only if the firmware is using fast interrupts)
T =0, if present

MO - M4 = SVC32 mode = 0x13

sp See Section 6.2.2

ro See Section 6.2.3

rl,r2 See Section 6.2.4

r2 0

r3 Reserved for platform binding
r4 Reserved for platform binding
Other user 0

mode registers

6.2.2. Initial Stack

Client programsshall be invoked with a valid stack pointesp) with at least 4K bytes of memory available for
stack growth. The stack pointshnall be 4-byte aligned.

6.2.3. Client Interface Calling Convention
To invoke a client interface serviceclent program:

e Constructs a client interfaeegument array as specified in [1],
e Places the array’s addressid, and
» Transfers control to theient interface handler, with the return address il 4.
A typical way of accomplishing this is:
\ First set rl1 to dient Interface Handler entry point address, then:
nov ri4, pc \ Establish return address pointer
nov pc, rl \ Load pc with CIF Handler entry point

November 5, 1997 Revision 0.3 DRAFT Preliminary 9of 18

OCO~NOOUITARWNE

ARM Processor Binding

The client interface handler shall use various CPU registers as described in the following table. The term
“preserved” below means that the regiseall have the same value when returning as it did when the client
interface service was invoked.

Register(s) Value

ro Argument array address on client interface entry.
Result valuet(r ue orf al se) on client interface return.

ri-r3 Scratch registers; potentially destroyed.

ra-r12 Preserved.

ri3 Stack pointer; preserved. Need not point to a valid stack upon entry. Consequenrgly, a
client program need not create a valid stack prior to calling the client interface hgndler.

ril4 Contains return address and is potentially destroyed.

psr Condition codes potentially destroyed; other fields preserved.

6.2.4. Client Program Arguments

The calling progranmay pass to the client an array of bytes of arbitrary content; if this array is present, its
address and lengthall be passed in registerd andr 2, respectively. For programs booted directly by Open
Firmware, the length of this array is zero. Secondary boot programs may use this argument array to pass
information to the programs that they boot.

Note: The Open Firmware standard makes no provision for specifying such an array or its contents.
Therefore, in the absence of implementation-dependent extensions, a client program executed directly
from an Open Firmware implementation will not be passed such an array. However, intermediate boot
programs that simulate or propagate the Open Firmware client interface to the programs that they load
can provide such an array for their clients.

Note: boot command line arguments, typically consisting of the name of a file to be loaded by a
secondary boot program followed by flags selecting various secondary boot and operating system
options, are provided to client programs via the " boot ar gs" and " boot pat h" properties of the
"/ chosen" node.

6.2.5. Trap table

In this sectionsave-state-and-interact means to save the CPU state to the extent possible, display (if possible) a
message indicating that a trap occurred, and return control to the Open Firmware user interface if it is present.

A client program that installs its own trap table entries but wishes to continue using Open Firmware debugging
services should preserve the Open Firmware trap table entries for any traps that the client program does not
explicitly need to handle.

Open Firmwareshall use the following format for its trap table.
Trap Table

Ofldr pc, [pc, #56]
41 1dr pc, [pc, #56]

12

64 | & handler for Exception ¢
68 | & handler for Exception]

10 of 18 Preliminary November 5, 1997 Revision 0.3 DRAFT

OCoO~NOOTA~AWNE

ARM Processor Binding

Note: The specification of a definite trap table format makes it easy for client programs to determine
the addresses of the firmware’s individual trap handlers. This is useful for client programs that wish to
share the responsibility for handling traps with Open Firmware.

Typical Open Firmware trap responses are as follows:

Trap Type Response

Reset (in ROM) Restart Open Firmware.

External timer interrupt | Implemed ar m get - nsecs and perhapss.

Other external interrupt$ save-state-and-interact (Typically Open Firmware runs with these other
interrupts disabled.)

Undefined instruction Breakpoints.

Fast interrupt save-state-and-interact (but may perform other functions needed for a
specific hardware design).

Data access exception | save-state-and-interact

Address exception save-state-and-interact

6.2.6. Virtual address space and memory allocation

When a client program begins execution, an Open Firmware implementation’s use of any virtual address space
outside of the ranges 0x0000.0000-0x0000.1000 and 0xF700.0000-OxF7FEHaHHfave ceased, except for

the virtual address space and associated memory where the client program is loaded (see Section 6.1.2).
Subsequently, the Open Firmware implementasizail not allocate virtual address space outside those ranges,
except as explicitly requested by a client program.

Note: By inspecting the value of the " avai | abl e" and " exi sti ng" propertiesin an MMU package,

if such a package exists, a client program can determine precisely which ranges of virtual address space
the firmware is using. For maximum portability, a client program ought not depend on the availability

of any particular “hardcoded” virtual address.

6.2.7. Memory Cache(s)

The caches of the processor shall be enabled when the client program is invoked. (As specified by Section
6.1.2, the I-cache must be consistent with the D-cache for all memory areas occupied by the client program.)

6.2.8. Interrupt Sharing

This section describes techniques for handling interrupts when client programs are making active use of Open
Firmware client services and device drivers.

Typicaly, Open Firmware implementations attempt to minimize their use of interrupts, for simplicity and
robustness. On many systems, the only Open Firmware feature that demands the use of interrupts is al ar m On
some systems, the implementation of get - nsecs and sometimes ns also depend upon interrupts. (For the
Digital Network Architecture, interrupts are required for al three of those functions, although ns can be
implemented reasonably well without interrupts, at least for short durations.)

The only interrupt that is needed for these functions is a periodic timer tick. Relatively few high-level firmware
functions depend upon those low-level interrupt-dependent functions. Typically, al ar mis used to poll the

console input device (usually a keyboard or a serial port) periodically to check for a “break” sequence indicating
the user’s desire to interrupt the current firmware activity. If the firmware is not receiving a periodic timer tick
interrupt, alarm handlers will not be called. The typical result is that the user will be unable to interrupt arbitrary
firmware activity from the console input device, but the firmware will be otherwise functional.

The most common uses fget - nsecs are network protocol time-outs and device driver time-outs to prevent
indefinite “hangs” when waiting for a device to respond. In many cases, when the network is responsive and
devices are working correctly,get - nsecs failure (usually caused by the firmware not receiving a periodic

November 5, 1997 Revision 0.3 DRAFT Preliminary 11of 18

OCO~NOOUITARWNE

ARM Processor Binding

timer tick interrupt such that get - nsecs aways returns the same value) may not have any noticeable effect on
overall firmware operation.

Nevertheless, even though most device drivers make scarce use of al ar mand get - msecs, it cannot be
guaranteed that a particular driver will not require them for a critical function. Therefore, it is prudent for client
programs that use Open Firmware services, particularly those that involve 1/0O, to preserve the delivery of timer
tick interrupts to the firmware.

6.3. Additional Client I nterface Services

In addition to the list of client interface methods defined in Section 6.3.2 of [1], the
/ openpron cl i ent - servi ces node shall contain the following methods.

restart
IN. [string] conmmand
QUT: <doesn’t return>
Resetsthe system (aswith thecommandr eset - al |) in such away that the firmware, during its subsequent
startup sequence, will execute command instead of performing the automatic default boot process. command
isastring containing a sequence of user interface commands.

The permissiblelength of command may depend upon the availability of system resources such asfree space
inthe NVRAM that the firmware uses for storing configuration variables. In the absense of the exhaustion
of such resourcesfor other uses, the firmware shall be ableto accept command strings of at least 80 characters.

cal | -static-net hod
IN: [string] method, phandle, stack-arg1l, ..., stack-argP
OUT: catch-result, stack-resultl, ..., stack-resultQ
cal I - met hod invokes the static device method named method in the package identified by phandle. The
N_args-2 arguments associated with method, stack-argl, ..., stack-argRre pushed onto the Forth data
stack, with stack-arglon top of the stack, and method s executed as with the User Interface method
$cal | - met hod, guarded by cat ch.

The result returned by cat ch isreturned in catch-resultIf catch-resultis non-zero (meaning that an error
occurred during the execution of method, the depth of the Forth data stack is restored to its depth prior to the
execution of cal | - met hod. The values of the elements of the returned val ues portion of the argument array
are undefined.

If catch-resultiszero, cal | - met hod pops up to K_returns1 items from the Forth data stack into the
returned val ues portion of the argument array, with stack _resultXorresponding to the top of the stack.

N_argsand K_returnsare stored in the argument array, and may be different for different callsto

cal I - met hod. If the number of items J left on the Forth data stack as a result of the execution of method
islessthan K_returns1, only stack_resultl.. stack result are modified; other elements of the returned
values portion of the argument array are unaffectelisifjreater thak_returns-1, (J - Q) additional items
are popped from the Forth data stack after sestizk resultl ... stack_resultQ, so that, in all cases, the
execution otcal | - net hod results in no net change to the depth of the Forth data stack.

A compliant Open Firmware implementation must allow at leasitack_arg and sixstack result items.
The behavior o€al | - st ati c- met hod is undefined iimethod is not a static method.

6.4. Client Callbacks

If a client program takes control of timer interrupts or memory management, but needs to continue using Open
Firmware client services thereafter, the client program must register a callback routine that supplies services that

the firmware can use to perform the functions that the client program has subsumed.

The following subsections define those callback services.

12 of 18 Preliminary November 5, 1997 Revision 0.3 DRAFT

OCoO~NOOTA~AWNE

ARM Processor Binding

The callback mechanism must operate in accordance with the specifications for cal | back, $cal | back, and

set - cal | back in [1]. In particular, the callback mechanism operates in a fashion very similar to the client

interface handler, except in the other direction (the firmware calls the client, instead of the client calling the

firmware). The client program first invokes the set - cal | back client service to inform the firmware of the

address of the callback handler routine. Subsequently, the firmware constructs an “argument array” and calls the
callback handler routine, passing the address of the argument array as an argum@rfoithe ARM

processor).

Several of the callback services defined below refer to the system-dependent MMU page size. For the ARM
processor, that page size is 4096 bytes. Under some circumstances, the ARM MMU can deal with finer
granularity than one page; specifically, it can apply a different protection to each of the four 1K sub-pages of a
page. The MMU-related callback services defined below do not support sub-page granularity; all operations are
performed in units of one page.

6.4.1. Virtual Address Trandation Assist Callbacks

map
I N [address] phys, [address] virt, size, node
QUT: throw code, error
This callback service creates an address translation associating the region of virtual address spsize of size
beginning at the virtual addregist with the region of physical address of the same size beginning at the
physical addresghys.

mode specifies the values for the “AP” fields and the “C” and “B” bits of a page table entry. A page table
entry is encoded as follows:

0000.0000.0000.0000.0000.AP0d.ddd0.CB00

where:
AP Encodes the access permissions
dddd Is the domain number
C Is the cacheable bit
B Is the bufferable bit
0 Is a bit whose value is 0

Is punctuation used to delimit groups of 4 bits

The fields and bits shown above are in accordance with the ARM Memory Management Unit Architecture
definition in [2].

The indicated access permissions apply to the entire range specified by the argumegmts/toch implies

that the implementation afap must propagate the AP bits into each of the AP[0-3] sub-page access
permission fields of any second-level descriptors that are used to accomplish the translation.

The firmware must specify domain 0 for amgpde arguments that it generates internally, and must preserve
the domain field unchanged for ampde value that it receives as the return value from an invocation of the
t ransl at e callback and subsequently passes as an argumentrtagheallback.

The implementation afap may use any combination of first-level and second-level descriptors to
accomplish its function, subject to the restriction that it must faithfully establish the requested translation
without changing any other extant translations that are outside the requested range.

Thevirt, phys, andsize arguments that the caller passes to this service must be multiples of the system-
dependent MMU page size.

The return valuerror shall be zero if the operation succeeded, or a system-specific non-zero error code
otherwise.

November 5, 1997 Revision 0.3 DRAFT Preliminary 13 of 18

OCO~NOOUITARWNE

ARM Processor Binding

unnmap

transl

IN. [address] virt, size

QUT: throw code

This callback service removes any address translation currently associated with the region of virtual address
space of size size beginning at the virtual addressvirt. Typically, thisinvolves setting the address translation
for that virtual region to a system-specific “invalid” or “not mapped” state.

Thevirt andsize arguments that the caller passes to this service must be multiples of the system-dependent
MMU page size.

ate

IN: [address] virt

QUT: throw code, error, [address] phys, node

This callback service returns information about the address translation currently associated with the virtual
addreswirt. If there is currently no valid translation for that virtual addresserttee return valueshall be a
system-specific non-zero error code and the number of return values (as indicated by the N_returns cell of the
argument array3hall be two. Otherwisegrror shall be zero, the number of return valghall be four phys

shall be the physical address to whight is translated, anehode shall specify the values for the “AP” fields

and the “C” and “B” bits of a page table entry as described above mager

The value returned in theode resultshall reflect the domain signified by the first-level descriptor and the
access permissions signified by either the section descriptor (if the virtual address is mapped by a section
descriptor) or the first sub-page (APO) (if the virtual address is mapped by a second-level descriptor).

The firmware must specify domain O for amgde arguments that it generates internally, and must preserve
the domain field unchanged for ampde value that it receives as the return value from an invocation of the
t r ansl at e callback and subsequently passes as an argumentrtagheallback.

Thevirt argument that the caller passes to this service must be a multiple of the system-dependent MMU page
size.

6.4.2. Claim and Release Callbacks

cl ai m phys

IN. [address] min_addr, [address] max_addr, size, align
QUT: throw code, error, [address] phys_addr

This callback service allocates consecutive pages of physical RAM subject to the following constraints:

» The beginning address of the first paball be (using unsigned comparison) greater than or equal to
min_addr and less than or equalax_addr.

» The beginning address of the first pagall be a multiple of the value afign. The value oflign passed
to this callback must be a multiple of the system-dependent MMU page size.

« The size of the regioshall besize bytes. The value aize passed to this callback must be a multiple of
the system-dependent MMU page size.

» The pageshall be at consecutive addresses.
» The regiorshall not span the boundary between the maximum unsigned number and zero.

If the allocation fails, therror return valueshall be a system-dependent non-zero error code and the number
of return values (as indicated by the N_returns cell of the argumentsiaH\he two. Otherwisesrror shall

be zero, the number of return valghall be three, anghys addr shall be the physical address of the
beginning of the first allocated page.

There are three general possibilities foritie_addr andmax_addr arguments:
e min_addr = 0,max_addr = <maximum unsigned integer>

In this case, the firmware places no constraints on the address range of the return value; it is willing to
accept any physical memory that meets the alignment constraints. (This is the usual case.)

14 of 18

Preliminary November 5, 1997 Revision 0.3 DRAFT

OCoO~NOOTA~AWNE

ARM Processor Binding

* min_addr = max_addr
In this case, the firmware is requesting the allocation of a specific range of physical memory. This case is
rarely used; typically, when the firmware needs to use a specific page or pages of RAM, it claims that
RAM prior to the time that the client program takes control of memory allocation. This callback is used to
implement the firmwar&/ menor y" nodecl ai mmethod, and it is possible that a user or program
might attempt to claim a specific physical page, so this case is defined. It is of course possible that it may
not be possible to satisfy such a request, in which case the callback would return an error code.

If min_addr=max_addr, they must be multiples afign, otherwise it would not be possible to simulta-
neously satisfy both the alignment and range constraints.

* <otherwise>

If min_addr andmax_addr differ, butmin_addr is not zero omax_addr is not the maximum unsigned

integer, then the firmware is requesting the allocation of physical memory somewhere within a particular
address range. The most common use of this case is for DMA-based I/O devices that cannot access arbi-
trary addresses. For example, in systems with bus-mastering ISA devices, there is often no way for those
devices to supply DMA addresses outside the range 0 to 16 MBytes. Typically, the firmware uses this
form of constrained physical allocation only for such cases.

Since the definition of this callback service specifies that the constraint applies only to the beginning
address of the first page of allocated memory, if the entire allocated range must fall within a certain region,
the firmware must be careful to supply a valuenfiax_addr such that the value ofiax_addr + size does

not extend beyond the end of the desired region.

r el ease- phys

I N: [address] phys_addr, size

QUT: throw code

Free consecutive pages of physical RAM, making it available for later use. The size of the region to be freed
is given bysize. Thephys addr andsize arguments passed to this callback must be multiples of the system-
dependent MMU page size. The physical RAM within the region to be freed must either have been previously
allocated byl ai m phys or have already been “owned” by the firmware at the time that the client program
took control of physical memory allocation.

claimvirt

IN. [address] min_addr, [address] max_addr, size, align
QUT: throw code, error, [address] virt_addr

This callback service allocates consecutive page frames of virtual address space subject to the following
constraints:

* The beginning address of the first page fratmadl be (using unsigned comparison) greater than or equal
to min_addr and less than or equalr@x_addr.

» The beginning address of the first page frahvatl be a multiple of the value afign. The value oflign
passed to this callback must be a multiple of the system-dependent MMU page size.

* The size of the regioshall besize bytes. The value aize passed to this callback must be a multiple of
the system-dependent MMU page size.

« The pages frameshall be at consecutive addresses.
* The regiorshall not span the boundary between the maximum unsigned number and zero.

If the allocation fails, therror return valueshall be a system-dependent non-zero error code and the number
of return values (as indicated by the N_returns cell of the argumentsivad\he two. Otherwisesrror shall

be zero, the number of return valshall be three, andrt_addr shall be the virtual address of the beginning

of the first allocated page frame.

There are three general possibilities foriie_addr andmax_addr arguments:
e min_addr = 0, max_addr = <maximum unsigned integer>

In this case, the firmware places no constraints on the address range of the return value; it is willing to
accept any physical address that meets the alignment constraints. (This is the usual case.)

November 5, 1997 Revision 0.3 DRAFT Preliminary 150f 18

OCO~NOOUITARWNE

ARM Processor Binding

* min_addr = max_addr
In this case, the firmware is requesting the allocation of a specific virtual address. This case is rarely used;
typically, when the firmware needs to use to a specific virtual address, it claims that virtual address prior
to the time that the client program takes control of address allocation. This callback is used to implement
the firmware" / mmu" nodecl ai mmethod, and it is possible that a user or program might attempt to
claim a specific virtual address, so this case is defined. It is of course possible that it may not be possible
to satisfy such a request, in which case the callback would return an error code.

If min_addr=max_addr, they must be multiples afign, otherwise it would not be possible to simulta-
neously satisfy both the alignment and range constraints.

* <otherwise>

If min_addr andmax_addr differ, butmin_addr is not zero omax_addr is not the maximum unsigned

integer, then the firmware is requesting the allocation of virtual address space somewhere within a partic-
ular address range. The most common use of this case is for DMA-based I/O devices that cannot access
arbitrary addresses when used on a system with virtually-addressed DMA. For example, some DMA
devices drive some number of high-order address lines to fixed values, so on a virtual-DMA system, the
DMA addresses for those devices must be taken from a specific region. Typically, the firmware uses this
form of constrained physical allocation only for such cases.

Since the definition of this callback service specifies that the constraint applies only to the beginning
address of the first page of allocated memory, if the entire allocated range must fall within a certain region,
the firmware must be careful to supply a valuenfiax_addr such that the value ofiax_addr + size does

not extend beyond the end of the desired region.

rel ease-virt

IN: [address] virt_addr, size
QUT: throw code

Free consecutive page frames of virtual address space, making it available for later use. The size of the region
to be freed is given bsize. The valuewirt_addr andsize passed to this callback must be multiples of the
system-dependent MMU page size.

The virtual address space within the region to be freed must either have been previously allocated by
cl ai mvi rt orhave already been “owned” by the firmware at the time that the client program took control
of virtual address space allocation.

6.4.3. Interrupt Callback

tick

IN. [address] intsave

QUT: throw code

This callback service notifies the client program each time that the firmware handles a timer tick interrupt,
giving the client program a chance to schedule or perform periodic operations based upon that tick.

If the client program has registered a callback handler, the firmsalleattempt to invoke thei ck

callback as part of the process of handling a timer tick interrupt. (Open Firmware typically uses timer tick
interrupts to implement thed ar mandget - nsecs features). If the client program does not implement the
ti ck callback, thehrow-code result will be non-zero (according to the usual semantics of client callbacks),
in which case the firmwahall proceed with the rest of its timer tick handling process as though the callback
had not been attempted.

The firmwareshall invoke thet i ck callback in IRQ mode with interrupts disabled.

intsave is the address of a 260-byte array of memory that is used to pass to and from the client program the
values of certain processor registers as they existed just prior to the occurrence of the tick interrupt. The
firmwareshall set the contents of the array as follows, prior to invoking thek callback. Each array entry

16 of 18

Preliminary November 5, 1997 Revision 0.3 DRAFT

OCoO~NOOTA~AWNE

ARM Processor Binding

isa 32-hit little-endian integer representing the saved value of an ARM CPU register.

Offset

(decimal) | Contents
0 PSR
4 ro
8 rl
12 r2
16 r3
56 r13 (SP)
60 rl4 (LR)
64 r15 (PC)

For “banked” registers (registers for which the ARM processor has multiple copies for different modes), the
saved register valuehall be for the register set corresponding to the mode indicated in the saved PSR value.

After thet i ck callback returns, the firmwashall proceed with the rest of its timer tick handling process,
and upon completioshall restore the state of the CPU registers to the values containedritstire array.

The client program'si ck callback handler may alter the contentsnidave in order to cause the firmware

to restore the register state to a state that differs from the state that existed when the timer tick occurred.

The client program'si ck callback handler must not enable interrupts during its execution, but may, by
modifying the PSR value in thatsave array, cause a delayed change in the interrupt enabled/disabled state
that will take effect upon completion of the firmware's timer tick handler.

The client program'si ck callback handler must not invoke any Open Firmware client services during its
execution. If Open Firmware client services need to be invoked as a result of timer ticks, the appropriate way
to do so is for the client program to usethek callback handler to schedule those activities for execution
after the firmware's tick handler completes (typically by modifyingntsave array).

7. User Interface Requirements

An implementation of Open Firmware for ARBShall conform to the core requirements as specified in [1] and
the following ARM-specific extensions.

7.1. Machine Register Access

The following user interface commands represent ARM registers within sheed program state. Executing the
command returns the saved value of the corresponding register. The saved value may be set by preceding the
command withto; the actual registers are restored to the saved values gehisrexecuted.

The following command displays the ARM CPld&ved program state.
.registers

Displayr O throughr 15 andpsr.
7.1.1. Integer Registers

psr
Access saved copy of Program Status Register.

November 5, 1997 Revision 0.3 DRAFT Preliminary 17 of 18

OCO~NOOUITARWNE

ARM Processor Binding

r0 through r15
Access saved copies of integer registers.

up

Synonym for r 9.
t os

Synonym for r 10.

rp

Synonym for r 11.
ip

Synonym for r 12.

Sp
Synonym for r 13.

Ir
Synonym for r 14.

pc
Synonym for r 15.

7.1.2. Floating-Point Registers

Implementation of floating point register access is optional.

fO through f7

Access saved copies of floating point registers.

7.1.3. SCC Registers
TBD

7.2. ROM Upgrade Method

The following command is optional.

721 net-flash (--)

Reprograms the firmware from the network.

7.3. Configuration Variables

There are no ARM-specific configuration variables.

18 of 18 Preliminary

November 5, 1997 Revision 0.3 DRAFT

	Task Group Members
	Trademarks
	Revision History
	Table of Contents
	1. Overview
	2. References and Terms
	2.1. References
	2.2. Terms

	3. Data Formats and Representations
	4. Memory Management
	4.1. Open Firmware’s Use of Memory
	4.1.1. Virtual-Mode
	4.1.2. Client Interface
	4.1.2.1. Open Firmware Rules
	4.1.2.2. Client Program Rules

	5. Device Tree
	5.1. "/cpus" Node
	5.1.1. Physical Address Formats and Representations
	5.1.1.1. Numerical Representation
	5.1.1.2. Text Representation
	5.1.1.3. Unit Address Representation

	5.1.2. "/cpus" Node Properties

	5.2. "/cpus/cpu" Node
	5.2.1. "/cpus/cpu" node properties
	5.2.1.1. TLB Properties
	5.2.1.2. Internal (L1) Cache Properties

	5.2.2. "/cpus/cpu" Node Methods

	5.3. "/chosen" Node
	5.4. Memory Management Unit
	5.4.1. Memory Management Unit Properties
	5.4.2. Memory Management Unit Methods

	5.5. Ancillary (L2, L3 ….) Cache Node Properties

	6. Client Interface Requirements
	6.1. Client Program Loading
	6.1.1. Load Address
	6.1.2. Client Program Header

	6.2. Initial Program State
	6.2.1. Initial Register Values
	6.2.2. Initial Stack
	6.2.3. Client Interface Calling Convention
	6.2.4. Client Program Arguments
	6.2.5. Trap table
	6.2.6. Virtual address space and memory allocation
	6.2.7. Memory Cache(s)
	6.2.8. Interrupt Sharing

	6.3. Additional Client Interface Services
	6.4. Client Callbacks
	6.4.1. Virtual Address Translation Assist Callbacks
	6.4.2. Claim and Release Callbacks
	6.4.3. Interrupt Callback

	7. User Interface Requirements
	7.1. Machine Register Access
	7.1.1. Integer Registers
	7.1.2. Floating-Point Registers
	7.1.3. SCC Registers

	7.2. ROM Upgrade Method
	7.2.1. net�flash (--)

	7.3. Configuration Variables

